天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

P2P供應(yīng)鏈金融模式下中小企業(yè)信用風(fēng)險(xiǎn)評(píng)價(jià)研究

發(fā)布時(shí)間:2019-01-09 13:39
【摘要】:伴隨著互聯(lián)網(wǎng)金融的發(fā)展,供應(yīng)鏈金融已從最早的1.0時(shí)代發(fā)展到3.0時(shí)代,即互聯(lián)網(wǎng)供應(yīng)鏈金融。一方面,在現(xiàn)有開(kāi)展供應(yīng)鏈金融業(yè)務(wù)的主體一銀行和上市公司中,銀行業(yè)務(wù)對(duì)象的抓大放小、上市公司自有資金的運(yùn)營(yíng)弱勢(shì)直接導(dǎo)致供應(yīng)鏈金融業(yè)務(wù)存在空白和短缺。另一方面,2014年,P2P網(wǎng)絡(luò)借貸平臺(tái)出現(xiàn)“資產(chǎn)荒”以及P2P網(wǎng)絡(luò)借貸問(wèn)題平臺(tái)的不斷增加,P2P行業(yè)中逐漸成熟的平臺(tái)已經(jīng)開(kāi)始涉水“供應(yīng)鏈金融”。但是,在P2P供應(yīng)鏈金融模式下,P2P網(wǎng)絡(luò)借貸平臺(tái)面對(duì)的是來(lái)自中小企業(yè)的信用風(fēng)險(xiǎn),一旦供應(yīng)鏈上的中小企業(yè)發(fā)生違約,將會(huì)危及P2P網(wǎng)絡(luò)借貸平臺(tái)的資金運(yùn)轉(zhuǎn),進(jìn)而影響投資者的資金回收。因此,評(píng)價(jià)P2P供應(yīng)鏈金融模式下中小企業(yè)信用風(fēng)險(xiǎn),一方面可以幫助P2P網(wǎng)絡(luò)借貸平臺(tái)發(fā)掘優(yōu)質(zhì)的資產(chǎn),另一方面對(duì)P2P網(wǎng)絡(luò)借貸平臺(tái)有效評(píng)價(jià)供應(yīng)鏈金融模式下中小企業(yè)信用風(fēng)險(xiǎn)評(píng)價(jià)提出可行性建議。本文在文獻(xiàn)研究和理論研究的基礎(chǔ)上,首先從融資企業(yè)資質(zhì)、核心企業(yè)資質(zhì)、融資項(xiàng)目資質(zhì)、供應(yīng)鏈伙伴關(guān)系以及行業(yè)環(huán)境五個(gè)方面構(gòu)建了信用風(fēng)險(xiǎn)預(yù)選評(píng)價(jià)指標(biāo)體系,即5個(gè)一級(jí)指標(biāo),14個(gè)二級(jí)指標(biāo)以及24個(gè)三級(jí)指標(biāo),結(jié)合相關(guān)性分析和鑒別力分析,確定了的最終評(píng)價(jià)指標(biāo)體系,即5個(gè)一級(jí)指標(biāo),13個(gè)二級(jí)指標(biāo)以及20個(gè)三級(jí)指標(biāo)。其次,選取以A股煤炭供應(yīng)鏈上市公司瑞茂通(600180)及其部分子公司為核心企業(yè)的46家中小企業(yè),時(shí)間跨度最長(zhǎng)為2014-2015年的所需數(shù)據(jù),共形成88個(gè)樣本點(diǎn),通過(guò)基于主成分分析的Logistic回歸模型和BP神經(jīng)網(wǎng)絡(luò)模型對(duì)P2P供應(yīng)鏈金融模式下中小企業(yè)信用風(fēng)險(xiǎn)進(jìn)行了評(píng)價(jià),實(shí)證結(jié)果表明,在相同的指標(biāo)體系下,運(yùn)用BP神經(jīng)網(wǎng)絡(luò)模型對(duì)P2P供應(yīng)鏈金融模式下的中小企業(yè)信用風(fēng)險(xiǎn)評(píng)價(jià)的整體準(zhǔn)確率較高,優(yōu)于Logistic回歸模型的評(píng)價(jià)效果。最后結(jié)合理論研究和實(shí)證研究結(jié)果,本文從信用風(fēng)險(xiǎn)評(píng)價(jià)自身工作、信用風(fēng)險(xiǎn)評(píng)價(jià)輔助工作以及加強(qiáng)防范P2P網(wǎng)絡(luò)借貸自身法律風(fēng)險(xiǎn)三個(gè)方面提出了 P2P供應(yīng)鏈金融模式下中小企業(yè)信用風(fēng)險(xiǎn)評(píng)價(jià)建議。
[Abstract]:With the development of Internet finance, supply chain finance has developed from 1.0 times to 3.0 times, that is, Internet supply chain finance. On the one hand, among the banks and listed companies, the main body of the supply chain financial business is banks and listed companies, and the weakness of the operation of their own funds directly leads to the blank and shortage of the supply chain financial business. On the other hand, in 2014, the P2P network loan platform appeared "assets shortage" and the P2P network loan problem platform unceasingly increased, the P2P industry gradually matured platform already began to involve the water "the supply chain finance". However, in the P2P supply chain finance model, P2P network lending platform is faced with the credit risk from small and medium-sized enterprises. Once the small and medium-sized enterprises in the supply chain default, it will endanger the capital operation of P2P network lending platform. In turn, it affects the return of funds to investors. Therefore, evaluating the credit risk of SMEs under the P2P supply chain financial model, on the one hand, can help P2P network lending platform to explore high-quality assets. On the other hand, some feasible suggestions are put forward to evaluate the credit risk of SMEs under the supply chain finance model. On the basis of literature research and theoretical research, this paper first constructs the credit risk pre-selection evaluation index system from five aspects: financing enterprise qualification, core enterprise qualification, financing project qualification, supply chain partnership and industry environment. That is, 5 first class indexes, 14 secondary indexes and 24 third grade indexes, combined with correlation analysis and discriminant analysis, the final evaluation index system is determined, that is, 5 primary index, 13 second class index and 20 third grade index. Secondly, we select 46 small and medium-sized enterprises which take the A share coal supply chain listed company Ruimao Tong (600180) and some of its subsidiaries as the core enterprises. The longest time span is the data needed in 2014-2015, forming a total of 88 sample points. Through the Logistic regression model based on principal component analysis and BP neural network model to evaluate the credit risk of SMEs in P2P supply chain finance model, the empirical results show that under the same index system, The BP neural network model is better than the Logistic regression model in evaluating the credit risk of SMEs under the P2P supply chain finance model. Finally, combined with the theoretical and empirical research results, this paper from the credit risk evaluation of their own work, This paper puts forward some suggestions on credit risk evaluation of SMEs in P2P supply chain finance model from three aspects: supporting work of credit risk evaluation and strengthening prevention of legal risk of P2P network loan.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F832.4;F275

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 蔣曼曼;;供應(yīng)鏈金融視角下企業(yè)信用風(fēng)險(xiǎn)評(píng)價(jià)研究[J];經(jīng)營(yíng)與管理;2017年02期

2 繆苗;;P2P平臺(tái)供應(yīng)鏈融資業(yè)務(wù)內(nèi)部風(fēng)險(xiǎn)評(píng)估[J];財(cái)會(huì)通訊;2017年02期

3 劉艷春;崔永生;;供應(yīng)鏈金融下中小企業(yè)信用風(fēng)險(xiǎn)評(píng)價(jià)——基于SEM和灰色關(guān)聯(lián)度模型[J];技術(shù)經(jīng)濟(jì)與管理研究;2016年12期

4 趙培培;;P2P供應(yīng)鏈金融的發(fā)展模式分析[J];商場(chǎng)現(xiàn)代化;2016年29期

5 李思瑤;王積田;柳立超;;基于生存分析的P2P網(wǎng)絡(luò)借貸違約風(fēng)險(xiǎn)影響因素研究[J];經(jīng)濟(jì)體制改革;2016年06期

6 周少甫;劉馨子;;上市公司+P2P模式發(fā)展供應(yīng)鏈金融的研究[J];武漢金融;2016年11期

7 譚中明;黃丹;;基于生態(tài)圈視角的P2P網(wǎng)絡(luò)借貸信用風(fēng)險(xiǎn)形成機(jī)制及防范研究[J];西南金融;2016年09期

8 宋杰;;P2P洗牌,供應(yīng)鏈金融成新藍(lán)海 業(yè)內(nèi)稱今年市場(chǎng)規(guī)?蛇_(dá)20億[J];中國(guó)經(jīng)濟(jì)周刊;2016年18期

9 于曉虹;樓文高;;基于隨機(jī)森林的P2P網(wǎng)貸信用風(fēng)險(xiǎn)評(píng)價(jià)、預(yù)警與實(shí)證研究[J];金融理論與實(shí)踐;2016年02期

10 王珂;孟海麗;楊全;;模糊Credit Metrics模型及其在信用風(fēng)險(xiǎn)評(píng)估中的應(yīng)用[J];金融理論與實(shí)踐;2016年02期

相關(guān)重要報(bào)紙文章 前4條

1 岳品瑜;;P2P平臺(tái)拼資產(chǎn)轉(zhuǎn)向供應(yīng)鏈金融[N];北京商報(bào);2015年

2 張巍薇;;P2P的下一個(gè)藍(lán)海:供應(yīng)鏈金融[N];現(xiàn)代物流報(bào);2015年

3 張夏楠;陳瓊潔;;P2P涌入供應(yīng)鏈金融[N];華夏時(shí)報(bào);2015年

4 張莉;;P2P平臺(tái)擠入供應(yīng)鏈金融“混戰(zhàn)”[N];中國(guó)證券報(bào);2014年

相關(guān)碩士學(xué)位論文 前4條

1 沈軼雯;P2P網(wǎng)絡(luò)借貸行業(yè)信用風(fēng)險(xiǎn)防范策略研究[D];華東師范大學(xué);2015年

2 李寬;線上供應(yīng)鏈金融信用風(fēng)險(xiǎn)綜合評(píng)價(jià)研究[D];武漢理工大學(xué);2014年

3 李楠;供應(yīng)鏈金融的融資產(chǎn)品設(shè)計(jì)與優(yōu)化[D];天津大學(xué);2012年

4 張鵬;基于委托代理關(guān)系的供應(yīng)鏈風(fēng)險(xiǎn)研究[D];西北大學(xué);2009年

,

本文編號(hào):2405698

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/2405698.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d5847***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com