基于ARIMA與GRNN組合模型對(duì)人民幣匯率的預(yù)測(cè)
[Abstract]:With the rapid development of Chinese economy and the accelerating process of marketization of exchange rate, RMB exchange rate is becoming more and more important in domestic and foreign economy. On August 11, 2015, to enhance the marketization of RMB exchange rate, Allowing the yuan to join the SDR smoothly, the central bank dropped its daily intervention against the dollar, the exchange rate fluctuated more and more, and short-term exchange rate movements were highly uncertain. Under this background, accurate prediction of exchange rate volatility is of great theoretical significance and practical application value in reducing production cost and avoiding exchange rate risk of Chinese enterprises. Based on the domestic and foreign scholars' research on exchange rate, according to the linear and nonlinear characteristics of exchange rate series, this paper makes use of the prediction advantages of ARIMA model and GRNN model in linear space and nonlinear space, respectively. The combination model of ARIMA and GRNN is constructed to analyze the fluctuation trend of RMB exchange rate. This paper is divided into five parts: the first part expounds the research background and significance of RMB exchange rate, emphasizes the importance of the research, and then summarizes the domestic and foreign research trends of RMB exchange rate. This paper mainly includes the research of time series analysis and literature review on the prediction of exchange rate fluctuation. Finally, the main contents and methods of this paper are summarized. The second part reviews the development process of RMB exchange rate system and the change trend of RMB / US dollar exchange rate under different systems, and analyzes the impact of RMB / US dollar exchange rate fluctuation on our daily life and national economy. The third part introduces the related theories of ARIMA model and GRNN model and the method of model parameter setting. Then the principle and modeling steps of the combined model of ARIMA and GRNN are expounded. The fourth part uses ARIMA and GRNN combination model to analyze RMB exchange rate empirically. Firstly, the linear principal part is obtained by using the ARIMA model to predict the intermediate sequence of RMB / US dollar exchange rate, and then the nonlinear part is obtained by using the GRNN neural network model to predict the residual of the former model. Finally, by adding the linear principal part and the nonlinear residual part, the prediction results of the intermediate price series of RMB / US dollar exchange rate are obtained. The results show that the ARIMA-GRNN combination model is superior to the single ARIMA model and the single GRNN model in predicting the intermediate price of RMB / US dollar exchange rate, and the GRNN model is better than the ARIMA model. On the basis of analyzing and summarizing the results of empirical test, the fifth part also points out the shortcomings of the paper and the points that need to be further studied.
【學(xué)位授予單位】:湖北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F832.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張艷;蔡光興;;基于ARIMA和GRNN模型對(duì)人民幣匯率的預(yù)測(cè)[J];特區(qū)經(jīng)濟(jì);2017年02期
2 王正新;陳雁南;;“匯改”以來人民幣實(shí)際有效匯率波動(dòng)的非線性機(jī)制——基于平滑轉(zhuǎn)移自回歸模型的實(shí)證研究[J];金融理論與實(shí)踐;2016年06期
3 孔佳文;卞佳yN;方小萱;李文;;基于ARIMA模型的人民幣匯率分析及預(yù)測(cè)[J];現(xiàn)代經(jīng)濟(jì)信息;2016年11期
4 孫永利;王華金;郝麗;肖曉明;;基于神經(jīng)網(wǎng)絡(luò)和遺傳算法的螺旋折流板換熱器性能預(yù)測(cè)[J];化學(xué)工業(yè)與工程;2016年04期
5 宮舒文;;基于GARCH族模型的人民幣匯率波動(dòng)性分析[J];統(tǒng)計(jì)與決策;2015年12期
6 王建國(guó);;基于BP神經(jīng)網(wǎng)絡(luò)的股票價(jià)格反轉(zhuǎn)點(diǎn)預(yù)測(cè)[J];現(xiàn)代計(jì)算機(jī)(專業(yè)版);2015年05期
7 張瑩;邵毅;王式功;尚可政;李旭;劉慧;耿迪;;呼吸系統(tǒng)疾病死亡人數(shù)的人工神經(jīng)網(wǎng)絡(luò)方法研究[J];中國(guó)衛(wèi)生統(tǒng)計(jì);2014年05期
8 李明景;汪金菊;;基于ARMA-稀疏貝葉斯模型的匯率預(yù)測(cè)研究[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年08期
9 危黎黎;李超;李余輝;;基于STAR模型的人民幣匯率非線性特征及預(yù)測(cè)[J];統(tǒng)計(jì)與決策;2014年09期
10 陳黎明;王春香;黃偉;胡晉武;;人民幣匯率波動(dòng)的非線性特征研究[J];統(tǒng)計(jì)與決策;2014年09期
相關(guān)博士學(xué)位論文 前1條
1 廖薇;基于神經(jīng)網(wǎng)絡(luò)和遺傳規(guī)劃的匯率預(yù)測(cè)技術(shù)研究[D];華東師范大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 陳天舒;基于ARIMA與GPR組合模型的人民幣匯率預(yù)測(cè)[D];山東大學(xué);2015年
2 黃臘梅;人民幣匯率GARCH-GRNN組合預(yù)測(cè)研究[D];湖南大學(xué);2009年
,本文編號(hào):2253554
本文鏈接:http://sikaile.net/jingjilunwen/huobiyinxinglunwen/2253554.html