天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

BACT模型在P2P借款人信用風(fēng)險評估中的應(yīng)用

發(fā)布時間:2018-05-10 10:00

  本文選題:P2P網(wǎng)貸 + 信用風(fēng)險; 參考:《廣州大學(xué)》2017年碩士論文


【摘要】:P2P網(wǎng)絡(luò)借貸,俗稱P2P網(wǎng)貸,起步于英國.近年來,伴隨著互聯(lián)網(wǎng)技術(shù)的快速普及,P2P網(wǎng)貸在國內(nèi)外發(fā)展特別迅速,呈現(xiàn)出各種各樣的形式.P2P網(wǎng)貸屬于小額借貸,投資門檻低,備受大眾青睞,然而平臺跑路、借款人違約等事件層出不窮,因而也得到廣泛關(guān)注.本文以中國P2P網(wǎng)貸為研究對象,運用兩種常用的機(jī)器學(xué)習(xí)方法和一種新的貝葉斯方法來評估網(wǎng)貸借款人的信用風(fēng)險.這三種方法分別是:支持向量機(jī)(SVM)、隨機(jī)森林(RF)以及貝葉斯可加分類樹(BACT).首先將原始數(shù)據(jù)分成訓(xùn)練數(shù)據(jù)和測試數(shù)據(jù),然后將訓(xùn)練數(shù)據(jù)等分成三份,稱為原始訓(xùn)練集.考慮到數(shù)據(jù)存在類不平衡問題,故使用SMOTE算法對訓(xùn)練數(shù)據(jù)進(jìn)行處理,以下將稱這種數(shù)據(jù)為SMOTE訓(xùn)練集.其次分別以原始訓(xùn)練集、SMOTE訓(xùn)練集分別通過3折交叉驗證,同時選取各模型對應(yīng)參數(shù).然后結(jié)合訓(xùn)練集、所選參數(shù)及模型對測試集進(jìn)行建模、預(yù)測,進(jìn)而比較不同訓(xùn)練數(shù)據(jù)集下訓(xùn)練所得模型之間的分類效果.最終發(fā)現(xiàn),在使用SMOTE訓(xùn)練集來訓(xùn)練模型時,貝葉斯可加分類樹和隨機(jī)森林能夠很好地識別違約的借款人,不過他們的AUC值沒有顯著變化,支持向量機(jī)的AUC值顯著變大;貝葉斯可加分類樹的分類準(zhǔn)確率和AUC值都比隨機(jī)森林、支持向量機(jī)大,其兩類誤分類率均比隨機(jī)森林、支持向量機(jī)小;隨機(jī)森林和貝葉斯可加分類樹對應(yīng)的ROC曲線明顯位于支持向量機(jī)所對應(yīng)ROC曲線的左上方,而隨機(jī)森林對應(yīng)的ROC曲線幾乎與貝葉斯可加分類樹對應(yīng)的ROC曲線重合;這些都說明在SMOTE訓(xùn)練集下,貝葉斯可加分類樹在評估借款人的信用風(fēng)險方面具有很好的效果。
[Abstract]:P2P network lending, commonly known as P2P network loans, started in the United Kingdom. In recent years, with the rapid popularization of Internet technology, P2P network loans are developing rapidly at home and abroad, showing a variety of forms. P2P network loans are small loans, low investment barriers, popular favor, but the platform runs. Borrowers default and other events emerge in endlessly, and thus get widespread attention. In this paper, two commonly used machine learning methods and a new Bayesian method are used to evaluate the credit risk of Chinese P2P loan borrowers. The three methods are: support vector machine (SVM), random forest forest (RFF), and Bayes additive classification tree (BACTT). First, the raw data is divided into training data and test data, and then the training data is divided into three parts, called the original training set. Considering the class imbalance of the data, the SMOTE algorithm is used to process the training data, which will be called the SMOTE training set. Secondly, the original training set and the SMOTE training set are respectively verified by 3 fold cross-validation, and the corresponding parameters of each model are selected at the same time. Then the test set is modeled and predicted with the training set, the selected parameters and the model, and then the classification effect between the training models under different training data sets is compared. Finally, it is found that when using SMOTE training set to train the model, Bayes plus classification tree and random forest can identify the defaulting borrowers well, but their AUC value does not change significantly, and the AUC value of support vector machine increases significantly. The classification accuracy and AUC value of the Bayes additive classification tree are higher than those of the random forest, and the support vector machine (SVM) is larger than the random forest, and the misclassification rate of the two kinds of tree is smaller than that of the random forest, and the support vector machine (SVM) is smaller. The ROC curve of random forest and Bayes additive classification tree is obviously located at the upper left of the ROC curve corresponding to support vector machine, while the ROC curve of random forest almost coincides with ROC curve corresponding to Bayes additive classification tree. These results show that the Bayes additive classification tree is effective in assessing the credit risk of the borrower under SMOTE training set.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:F832.4;F724.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高波;任若恩;;怎樣識別P2P網(wǎng)貸問題平臺[J];財會月刊;2017年05期

2 嚴(yán)復(fù)雷;李浩然;;P2P網(wǎng)貸平臺信用風(fēng)險影響因素分析[J];西南金融;2016年10期

3 王穎;梁婷;;組織中的權(quán)力分配與組織沉默——組織政治知覺的中介作用[J];經(jīng)濟(jì)管理;2016年06期

4 柳向東;李鳳;;大數(shù)據(jù)背景下網(wǎng)絡(luò)借貸的信用風(fēng)險評估——以人人貸為例[J];統(tǒng)計與信息論壇;2016年05期

5 王丹;張洪潮;;P2P網(wǎng)貸平臺信用風(fēng)險評級模型構(gòu)建[J];財會月刊;2016年09期

6 呂勇斌;姜藝偉;張小青;;我國P2P平臺網(wǎng)絡(luò)借貸逾期行為和羊群行為研究[J];統(tǒng)計與決策;2016年04期

7 王慧媛;;P2P網(wǎng)貸中借款年利率對借貸成功率影響的理論與實證研究——以人人貸為例[J];中國市場;2016年07期

8 姜培;宋良榮;;利率市場化背景下P2P網(wǎng)貸利率決定機(jī)制——基于“拍拍貸”經(jīng)驗數(shù)據(jù)的實證分析[J];財務(wù)與金融;2016年01期

9 于曉虹;樓文高;;基于隨機(jī)森林的P2P網(wǎng)貸信用風(fēng)險評價、預(yù)警與實證研究[J];金融理論與實踐;2016年02期

10 李新功;劉揚帆;;我國P2P羊群效應(yīng)形成機(jī)制與破解對策研究[J];征信;2015年12期

相關(guān)碩士學(xué)位論文 前7條

1 劉祖帆;盲目的借貸[D];西南財經(jīng)大學(xué);2016年

2 黃震;基于BP神經(jīng)網(wǎng)絡(luò)模型的中國P2P借款人信用風(fēng)險評估研究[D];北京交通大學(xué);2015年

3 王夢佳;基于Logistic回歸模型的P2P網(wǎng)貸平臺借款人信用風(fēng)險評估[D];北京外國語大學(xué);2015年

4 楊薇薇;P2P網(wǎng)絡(luò)信貸行為及風(fēng)險評估研究[D];中國海洋大學(xué);2014年

5 鄧興文;基于BART算法的分類問題研究[D];華南理工大學(xué);2014年

6 高瑞瑤;我國P2P網(wǎng)絡(luò)借貸借款方風(fēng)險分析與防范[D];中國社會科學(xué)院研究生院;2014年

7 郭陽;中國P2P小額貸款市場借貸成功率影響因素分析[D];天津大學(xué);2012年

,

本文編號:1868860

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/guojimaoyilunwen/1868860.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e278f***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com