福建省農(nóng)村信用社農(nóng)戶小額信貸信用風險的控制研究
本文選題:福建省 + 農(nóng)戶小額信貸; 參考:《福建農(nóng)林大學》2014年碩士論文
【摘要】:作為農(nóng)村扶貧的一種有效工具,農(nóng)戶小額信貸受到了社會各界的普遍關(guān)注。農(nóng)戶小額信貸能夠有效緩解農(nóng)民貸款難問題,并積極促進農(nóng)業(yè)增收和支持農(nóng)村經(jīng)濟的發(fā)展。可是,隨著農(nóng)戶小額信貸業(yè)務(wù)的不斷增加,以及其自身所帶有的一些特質(zhì),使得農(nóng)村信用社在發(fā)放農(nóng)戶小額信貸的過程中面臨著比一般貸款更高的信用風險。至2012年底,全國金融機構(gòu)涉農(nóng)貸款不良率達到2.4%,農(nóng)村信用社涉農(nóng)貸款不良率達到5.4%。就福建省的情況來看,到2012年末,商業(yè)銀行的平均不良貸款率為1%,福建省農(nóng)村信用社的不良貸款率1.21%,依然高于平均水平。目前,福建省大部分地區(qū)的農(nóng)村信用社主要是憑借信貸人員的主觀工作經(jīng)驗來定性分析、識別以及管理信用風險。如何運用農(nóng)戶貸款的相關(guān)資料,從定性分析向定量分析轉(zhuǎn)變,構(gòu)建科學合理的信用評價體系,是一個既有現(xiàn)實意義又有經(jīng)濟意義的課題。 本研究首先界定了農(nóng)戶、農(nóng)戶小額信貸、信用風險這三個基本概念,并且闡述了信息不對稱理論的相關(guān)內(nèi)容。其次,在分析借鑒了國外小額風險管理的模式的基礎(chǔ)上,介紹了目前我國小額信貸風險管理的手段。然后,解析了福建省農(nóng)村信用社小額信貸現(xiàn)狀及面臨的風險類型,并探究其小額信貸信用風險產(chǎn)生的根源。接著,在實證分析中,從農(nóng)戶基本特征、償債能力、家庭經(jīng)營狀況、貸款狀況以及信譽狀況五個大類中選取了22個農(nóng)戶信用評分指標。并且根據(jù)福建福清、福安和清流三個地區(qū)農(nóng)村信用社305個貸款農(nóng)戶的個人貸款檔案和個人信用信息檔案的相關(guān)數(shù)據(jù),運用logistic模型分析影響農(nóng)戶信用的顯著性因素,從而構(gòu)建福建農(nóng)戶信用評價指標體系。實證結(jié)果表明,logistic模型能夠有效評估小額信貸農(nóng)戶的信用風險,其準確率達到86.23%。本研究將logistic信用模型得出的信用基本分與農(nóng)戶信用卡和貸款情況分相加得到最終信用分,從而強調(diào)了農(nóng)戶的信用記錄。同時,本研究提出了構(gòu)建系統(tǒng)的農(nóng)信社小額信貸貸后信用風險控制體系,解決貸款以后怎么辦的問題,主要是從實行信息公示制度、規(guī)范小額信貸五級分類標準和加強貸后監(jiān)督審查三個方面來控制信用風險的產(chǎn)生。
[Abstract]:As an effective tool for poverty alleviation in rural areas, micro-credit of farmers has received widespread attention from all walks of life. Farmers' microfinance can effectively alleviate the problem of farmers' loan, and actively promote agricultural income and support the development of rural economy. However, with the continuous increase of the micro-credit business of farmers and its own characteristics, rural credit cooperatives are facing higher credit risk than ordinary loans in the process of extending micro-credit to farmers. By the end of 2012, the agricultural loans of financial institutions and rural credit cooperatives had reached 2.4% and 5.4% respectively. As far as Fujian Province is concerned, by the end of 2012, the average non-performing loan rate of commercial banks was 1 and the non-performing loan rate of Fujian rural credit cooperatives was 1.21, which was still above the average level. At present, rural credit cooperatives in most areas of Fujian Province mainly rely on the subjective work experience of credit personnel to qualitatively analyze, identify and manage credit risks. How to make use of the relevant data of farmers' loans, from qualitative analysis to quantitative analysis, and to construct a scientific and reasonable credit evaluation system is a subject of both practical and economic significance. This paper first defines the three basic concepts of peasant household, farmer micro-credit and credit risk, and expounds the relevant contents of information asymmetry theory. Secondly, on the basis of analyzing and drawing lessons from the model of foreign micro-risk management, this paper introduces the current methods of micro-credit risk management in China. Then, it analyzes the present situation and risk types of micro-credit of rural credit cooperatives in Fujian Province, and probes into the origin of micro-credit risk in Fujian Province. Then, in the empirical analysis, 22 farmers' credit scoring indexes are selected from five major categories: household basic characteristics, solvency, household management, loan status and credit status. According to the relevant data of the personal loan files and personal credit information files of 305 rural credit cooperatives in Fuqing, Fuan and Qingliu areas of Fujian Province, this paper uses logistic model to analyze the significant factors that affect the credit of rural households. In order to construct Fujian farmers credit evaluation index system. The empirical results show that logistic model can effectively evaluate the credit risk of micro-credit farmers, and its accuracy is 86.23. In this study, the credit score derived from logistic credit model is added to the credit card and loan situation of farmers to obtain the final credit score, which emphasizes the credit history of farmers. At the same time, this study puts forward a systematic credit risk control system for micro-credit lending in rural credit cooperatives, which solves the problem of how to do after the loan, mainly from the implementation of the information publicity system. Regulating the five-level classification of microfinance and strengthening the supervision and examination after lending to control the emergence of credit risk.
【學位授予單位】:福建農(nóng)林大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F832.35
【參考文獻】
相關(guān)期刊論文 前10條
1 張姣姣;;農(nóng)戶小額信貸違約風險防范機制的博弈分析[J];安徽農(nóng)業(yè)科學;2012年02期
2 馬文勤;孔榮;楊秀珍;;農(nóng)戶小額信貸信用風險評估模型構(gòu)建[J];財會月刊;2009年36期
3 胡愈;許紅蓮;王雄;;農(nóng)戶小額信用貸款信用評級探究[J];財經(jīng)理論與實踐;2007年01期
4 陳銳;;國外小額信貸業(yè)務(wù)發(fā)展情況及成功經(jīng)驗[J];福建金融;2009年12期
5 岳靜;;對我國農(nóng)村小額信貸信用風險的探討[J];北方經(jīng)貿(mào);2008年01期
6 寇軍中;;村鎮(zhèn)銀行貸款模式探究[J];消費導刊;2008年19期
7 羅茜;蒲勇健;;不對稱信息博弈下的農(nóng)戶小額信貸分析——以全國首批城鄉(xiāng)統(tǒng)籌示范區(qū)重慶市為例[J];經(jīng)濟與管理研究;2010年03期
8 費玉娥;劉志英;;農(nóng)戶小額信貸信用風險控制模式研究[J];農(nóng)村金融研究;2009年10期
9 孫清;汪祖杰;;LOGIT模型在小額農(nóng)貸信用風險識別中的應(yīng)用[J];南京審計學院學報;2006年03期
10 江能;鄒平;王澤麗;;聯(lián)保貸款信用風險的動態(tài)博弈分析[J];特區(qū)經(jīng)濟;2007年12期
,本文編號:1977908
本文鏈接:http://sikaile.net/jingjilunwen/guojijinrong/1977908.html