基于非參數(shù)方法的我國資本資產(chǎn)定價模型研究
本文選題:資產(chǎn)定價模型 切入點:非參數(shù)與半?yún)?shù) 出處:《南京財經(jīng)大學》2014年碩士論文
【摘要】:自從深圳證券市場與上海證券市場成立以來,經(jīng)過短短二十年的發(fā)展,中國資本市場取得了巨大的進步,成為全球第二資本市場。中國金融資本市場對于全球金融市場的影響作用越來越大,中國資本市場開放程度逐漸提高,因此需要建立能準確反映我國證券市場運行的資產(chǎn)定價模型,揭示資本市場風險與收益的關系。文章在借鑒國內(nèi)外研究成果的基礎上,結(jié)合我國股市的具體特點,利用非參數(shù)和半?yún)?shù)的方法對我國證券市場的資產(chǎn)定價進行研究。論文首先對抽樣獲得的每只股票均采用非參數(shù)光滑樣條方法建立單因子資產(chǎn)定價模型并進行估計,分析這種模型能否解釋我國資本市場的時變市場風險和非線性資產(chǎn)定價,基于該非參數(shù)資本市場特征線(cML)檢驗β系數(shù)的線性和穩(wěn)定性。并將非參數(shù)單因子模型與線性CAPM模型的結(jié)果進行比較,找出兩個模型擬合效果、β系數(shù)、α系數(shù)的差異。文章還以同樣的思路和方法建立Fama-French三因子的線性模型與非參數(shù)、半?yún)?shù)模型,對我國股市進行研究,并將結(jié)果與Fama-French的線性三因子模型進行比較。通過實證建模分析,論文得出以下主要結(jié)論:1.非線性CAPM模型對于我國證券市場的解釋力優(yōu)于傳統(tǒng)的線性CAPM模型,這不僅體現(xiàn)在似然比檢驗與模型擬合效果比較中,還體現(xiàn)在通過采用非參數(shù)方法繪制的特征曲線可以生動反映個股的α值都表現(xiàn)為隨著市場收益的變化而變動,這也就證明了α值存在時變性,而傳統(tǒng)的線性CAPM模型假定α值是固定的常數(shù),不隨市場態(tài)勢轉(zhuǎn)變而變化是錯誤的。2.盡管通過Wilcoxon-Mann-Whitney對大中小三個規(guī)模組的股票進行檢驗,不能認為通過線性方法與非參數(shù)方法求得的β系數(shù)存在差異,但是不論規(guī)模大小以及拒絕還是接受線性CAPM模型,非參數(shù)方法繪制的個股β值都表現(xiàn)為隨著市場收益的變化而變動,線性CAPM模型暗含著β系數(shù)是不變常數(shù)的假設被否定,即證明了β系數(shù)同樣具有時變性。3.我國證券市場存在規(guī)模效應,對規(guī)模效應的解釋,可以從各個上市公司業(yè)績和二級市場交易這兩個不同的層面去理解。4.賬面市值比效應僅僅在小規(guī)模(S)組中有所體現(xiàn);而在中等規(guī)模(M)組與大規(guī)模(B)組中并沒有這種效應。5.非參數(shù)三因子模型發(fā)現(xiàn)β值、規(guī)模因子sMB與賬面市值比因子HML的系數(shù)同樣存在時變性,線性三因子模型并不能準確的解釋股票的超額收益,非參數(shù)模型的優(yōu)越性再一次得到體現(xiàn)。6.為了選擇最能準確刻畫我國證券市場的資產(chǎn)定價模型,分別建立線性三因子模型、非參數(shù)三因子模型與各個半?yún)?shù)三因子模型,并對模型進行比較和假設檢驗,結(jié)論發(fā)現(xiàn)非參數(shù)三因子模型解釋力最強。
[Abstract]:Since the establishment of the Shenzhen Securities Market and the Shanghai Securities Market, after just 20 years of development, China's capital market has made great progress. As the second capital market in the world, China's financial capital market is playing a more and more important role in the global financial market, and the opening up of China's capital market is gradually increasing. Therefore, it is necessary to establish an asset pricing model that can accurately reflect the operation of China's securities market, and to reveal the relationship between capital market risks and returns. Using non-parametric and semi-parametric methods to study the asset pricing in China's securities market. Firstly, the paper uses the non-parametric smooth spline method to establish a single-factor asset pricing model and estimates the asset pricing model. Whether this model can explain the time-varying market risk and nonlinear asset pricing in China's capital market is analyzed. Based on the nonparametric capital market characteristic line, we test the linearity and stability of 尾 coefficient, and compare the results of the nonparametric single factor model with the linear CAPM model. To find out the difference of fitting effect between the two models, 尾 coefficient and 偽 coefficient. The paper also establishes the linear model and non-parametric and semi-parametric model of Fama-French three-factor with the same thinking and method, and studies the stock market in our country. By comparing the results with Fama-French 's linear three-factor model, the paper draws the following main conclusions: 1. The nonlinear CAPM model is superior to the traditional linear CAPM model in explaining the stock market in China. This is not only reflected in the comparison between likelihood ratio test and model fitting effect, but also in that the characteristic curve drawn by non-parametric method can vividly reflect that the 偽 value of individual stock changes with the change of market income. This proves that the 偽 value is time-varying, while the traditional linear CAPM model assumes that the 偽 value is a fixed constant and does not change with the change of market situation. The 尾 coefficients obtained by the linear method and the nonparametric method cannot be considered to be different, but regardless of the size and the rejection or acceptance of the linear CAPM model, The 尾 values of individual stocks plotted by the nonparametric method change with the change of market returns. The assumption that the 尾 coefficient is constant is denied in the linear CAPM model. It is proved that the 尾 coefficient is also time-varying. 3. There is a scale effect in the stock market of our country, and the explanation of the scale effect is discussed. It can be understood from the two different levels of performance of listed companies and secondary market trading. The book market value ratio effect is only reflected in the small scale Steam; However, there is no such effect in the medium scale M) group and the large scale B group. The nonparametric three factor model shows 尾 value, and the coefficient of the scale factor sMB and the book market value ratio factor HML is also time-varying. Linear three-factor model can not accurately explain the excess return of stock, and the superiority of non-parametric model is reflected again. In order to select the asset pricing model which can best describe the stock market in China, the linear three-factor model is established separately. The non-parametric three-factor model is compared with each semi-parametric three-factor model. The conclusion is that the non-parametric three-factor model has the strongest explanatory power.
【學位授予單位】:南京財經(jīng)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F832.51;F224
【相似文獻】
相關期刊論文 前10條
1 朱喬,,陳遙;評價輸入、輸出最佳組合的非參數(shù)方法[J];系統(tǒng)工程理論與實踐;1994年01期
2 王靜;一致性檢驗的非參數(shù)方法[J];質(zhì)量與可靠性;1998年05期
3 田文霞,郭京福,張曉彤;生產(chǎn)前沿的參數(shù)與非參數(shù)方法的比較[J];決策借鑒;2000年02期
4 常振海;劉薇;;波動率預測的參數(shù)方法與非參數(shù)方法比較[J];寧夏師范學院學報;2009年06期
5 李俊;徐晉濤;;省際綠色全要素生產(chǎn)率增長趨勢的分析——一種非參數(shù)方法的應用[J];北京林業(yè)大學學報(社會科學版);2009年04期
6 何進成;;基于非參數(shù)方法的深圳股市周末效應實證分析[J];周口師范學院學報;2009年06期
7 吳雙;;全要素生產(chǎn)率測算的參數(shù)方法與非參數(shù)方法之比較[J];時代經(jīng)貿(mào)(下旬刊);2008年02期
8 遲旭,楊德禮;生產(chǎn)過程狀態(tài)分析的非參數(shù)方法[J];管理工程學報;1998年02期
9 劉彤;利用非參數(shù)方法對上海股市周末效應的研究[J];數(shù)理統(tǒng)計與管理;2003年01期
10 劉洪;王江濤;;基于非參數(shù)方法的城鎮(zhèn)化與經(jīng)濟發(fā)展的分析[J];統(tǒng)計與決策;2013年22期
相關會議論文 前1條
1 郭京福;劉叔麟;;一定約束條件下最小成本最大收益的非參數(shù)方法[A];發(fā)展的信息技術(shù)對管理的挑戰(zhàn)——99’管理科學學術(shù)會議專輯(上)[C];1999年
相關博士學位論文 前1條
1 莊嚴;縱向等級數(shù)據(jù)基于秩次的非參數(shù)方法研究[D];南方醫(yī)科大學;2014年
相關碩士學位論文 前9條
1 Chigaru Farai(法拉);東南非共同市場自由貿(mào)易協(xié)定對貿(mào)易的作用—三種實證方法[D];首都經(jīng)濟貿(mào)易大學;2015年
2 Chigaru Faai(法拉);東南非共同市場自由貿(mào)易協(xié)定對貿(mào)易的作用—三種實證方法[D];首都經(jīng)濟貿(mào)易大學;2015年
3 張維偉;基于非參數(shù)方法的社;鸸善笔找媛恃芯縖D];南京大學;2014年
4 張相玉;基于非參數(shù)方法的我國資本資產(chǎn)定價模型研究[D];南京財經(jīng)大學;2014年
5 馮嬌杰;非參數(shù)方法對校準模型的改進及在中國的實證研究[D];南京大學;2013年
6 韓天紅;非參數(shù)方法對幾個經(jīng)濟數(shù)據(jù)的統(tǒng)計分析[D];華東師范大學;2009年
7 張楠;基于非參數(shù)方法的我國商業(yè)銀行操作風險計量研究[D];鄭州大學;2012年
8 方晨暉;條件Beta定價模型在我國股票市場的實證研究—基于非參數(shù)方法[D];浙江工商大學;2012年
9 王曉曦;基于非參數(shù)方法的短期風電功率預測研究[D];大連理工大學;2014年
本文編號:1668439
本文鏈接:http://sikaile.net/jingjilunwen/guojijinrong/1668439.html