天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

煉鋼產(chǎn)品質(zhì)量和合同生產(chǎn)周期解析

發(fā)布時間:2018-05-06 12:26

  本文選題:轉(zhuǎn)爐煉鋼 + 數(shù)據(jù)解析; 參考:《東北大學(xué)》2014年碩士論文


【摘要】:如何提高鋼鐵產(chǎn)品質(zhì)量和有效控制產(chǎn)品生產(chǎn)周期是鋼鐵企業(yè)在激烈的市場競爭中面臨的兩大難題。前者可通過操作優(yōu)化、過程控制等手段完善生產(chǎn)工藝;后者則需要對產(chǎn)品的生產(chǎn)周期進(jìn)行有效地預(yù)測判斷。兩者相輔相成,分別從“質(zhì)”和“量”的角度提升企業(yè)效益,提高競爭力。煉鋼是鋼鐵生產(chǎn)中的一道重要工序。在轉(zhuǎn)爐煉鋼過程中,碳與溫度的走勢直接反應(yīng)了轉(zhuǎn)爐內(nèi)的冶煉狀態(tài),決定著氧氣與其他輔料的加入策略,影響著出鋼質(zhì)量。因此,預(yù)測煉鋼過程中鋼水溫度和碳含量對提高煉鋼產(chǎn)品質(zhì)量至關(guān)重要。另一方面,鋼鐵企業(yè)的生產(chǎn)計劃都是圍繞產(chǎn)品合同和生產(chǎn)能力展開,合同生產(chǎn)周期的管理是鋼鐵生產(chǎn)管理中非常重要的一項(xiàng)任務(wù)。預(yù)測合同完成時間有助于從整體上把握合同進(jìn)程,指導(dǎo)生產(chǎn)計劃的排制和調(diào)整。本文利用數(shù)據(jù)解析方法,通過建立企業(yè)實(shí)際生產(chǎn)數(shù)據(jù)的解析模型,分別針對煉鋼過程中鋼水溫度和碳含量以及產(chǎn)品合同生產(chǎn)周期的預(yù)測問題進(jìn)行了解析研究。主要內(nèi)容包括以下幾個部分:(1)以鋼鐵企業(yè)轉(zhuǎn)爐煉鋼為背景,研究鋼水溫度與碳含量的預(yù)測問題。針對該問題,設(shè)計了基于改進(jìn)粒子群算法的最小二乘支持向量機(jī)方法,并分別建立鋼水溫度和碳含量的預(yù)測模型。建模過程中,采用多階段建模方法,實(shí)現(xiàn)對整個過程的動態(tài)預(yù)測。對于實(shí)際數(shù)據(jù)采集不細(xì)致的問題,采用插值算法對數(shù)據(jù)進(jìn)行預(yù)處理。最后通過實(shí)際數(shù)據(jù)進(jìn)行多組實(shí)驗(yàn),驗(yàn)證了該方法的有效性及多階段動態(tài)建模的準(zhǔn)確性。(2)以鋼鐵企業(yè)生產(chǎn)周期管理為背景,研究合同完成時間預(yù)測問題。鋼廠合同類型多,生產(chǎn)工序多且雜,產(chǎn)生了大量的合同數(shù)據(jù)信息。如何根據(jù)合同類型和特征,對合同完成時間進(jìn)行快速準(zhǔn)確的預(yù)測是本文研究重點(diǎn)。針對該問題,建立了基于粒子群算法的最小二乘支持向量機(jī)預(yù)測模型,利用歷史數(shù)據(jù)進(jìn)行解析模型訓(xùn)練,并用實(shí)際生產(chǎn)數(shù)據(jù)進(jìn)行實(shí)驗(yàn)分析,驗(yàn)證了模型的有效性。(3)以某鋼廠的實(shí)際合同管理為背景,設(shè)計開發(fā)了鋼鐵合同管理子系統(tǒng),對合同完成時間進(jìn)行預(yù)測并對當(dāng)前各類合同完成情況進(jìn)行統(tǒng)計。系統(tǒng)不僅實(shí)現(xiàn)了對生產(chǎn)過程中合同數(shù)據(jù)的監(jiān)控和分析功能,還與KPI績效管理系統(tǒng)兼容,將合同管理指標(biāo)作為員工個人的績效評價指標(biāo),實(shí)現(xiàn)績效考評的功能。
[Abstract]:How to improve the quality of iron and steel products and how to effectively control the production cycle are two major problems faced by iron and steel enterprises in the fierce market competition. The former can improve the production process by means of operation optimization and process control, while the latter needs to predict and judge the production cycle of the product effectively. The two supplement each other, from the angle of "quality" and "quantity" to enhance the efficiency of enterprises and enhance their competitiveness. Steelmaking is an important process in steel production. In the process of converter steelmaking, the trend of carbon and temperature directly reflects the smelting state in converter, determines the addition strategy of oxygen and other auxiliary materials, and affects the quality of steel production. Therefore, it is very important to predict the temperature and carbon content of molten steel to improve the quality of steelmaking products. On the other hand, the production planning of iron and steel enterprises revolves around product contract and production capacity, and the management of contract production cycle is a very important task in steel production management. Forecasting the completion time of the contract will help to master the process of the contract as a whole and guide the scheduling and adjustment of the production plan. Based on the method of data analysis, the prediction of temperature and carbon content of molten steel and the production cycle of product contract in the process of steelmaking are studied by establishing the analytical model of actual production data in the enterprise. The main contents are as follows: (1) based on the background of converter steelmaking in iron and steel enterprises, the prediction of molten steel temperature and carbon content is studied. To solve this problem, the least squares support vector machine (LS-SVM) method based on improved particle swarm optimization (PSO) algorithm is designed, and the prediction models of molten steel temperature and carbon content are established respectively. In the process of modeling, the multi-stage modeling method is used to realize the dynamic prediction of the whole process. The interpolation algorithm is used to preprocess the actual data. Finally, the validity of the method and the accuracy of multi-stage dynamic modeling are verified by many experiments based on the actual data. Based on the production cycle management of iron and steel enterprises, the prediction of contract completion time is studied. There are many types of contracts and many production processes in steel mills, which produce a large amount of contract data information. How to predict the contract completion time quickly and accurately according to contract types and characteristics is the focus of this paper. In order to solve this problem, a prediction model of least squares support vector machine based on particle swarm optimization algorithm is established. The analytical model is trained by using historical data, and the experimental analysis is carried out with actual production data. The validity of the model is verified. (3) based on the actual contract management in a steel plant, the steel contract management subsystem is designed and developed, the contract completion time is forecasted and the current contract completion situation is counted. The system not only realizes the function of monitoring and analyzing the contract data in the production process, but also compatible with the KPI performance management system. It regards the contract management index as the performance evaluation index of the individual employees and realizes the function of performance evaluation.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:F426.31;F273.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Niki Tait;李芬芬;;減少縫料運(yùn)送時間 縮短服裝生產(chǎn)周期[J];紡織服裝周刊;2006年20期

2 郭立夫,趙樹寬,陸曉芳;成組加工生產(chǎn)周期的矩陣算法[J];吉林工業(yè)大學(xué)學(xué)報;1990年02期

3 楊秀紅;;淺析縮短模具的生產(chǎn)周期[J];水力采煤與管道運(yùn)輸;2009年03期

4 雷紅星;;淺析縮短模具的生產(chǎn)周期[J];中小企業(yè)管理與科技(下旬刊);2010年04期

5 陳士怡 ,翁芷芬 ,游樹鵬 ,胡萸英 ,曾云中 ,杜大水,許洹大;金華火腿微生物研究 1.火腿微生物的人工接種及縮短生產(chǎn)周期的初步試驗(yàn)[J];杭州大學(xué)學(xué)報(自然科學(xué)版);1980年03期

6 梁祖紅;陳慶新;毛寧;林佳瑜;;兼顧生產(chǎn)周期約束的模具制造系統(tǒng)雙重資源優(yōu)化配置方法[J];計算機(jī)集成制造系統(tǒng);2013年07期

7 羅有根;;安全生產(chǎn)周期八周年的幾點(diǎn)思考[J];江西煤炭科技;2008年04期

8 吳巧玲;;改進(jìn)酸味糖果的拋光[J];今日科技;1993年06期

9 莊維政;消除生產(chǎn)周期延時現(xiàn)象 降低生產(chǎn)成本[J];山東冶金;1997年S1期

10 陳佩樺;將制模周期縮短一半[J];現(xiàn)代制造;2002年07期

相關(guān)會議論文 前4條

1 李晶;李敬敏;;基于動態(tài)規(guī)劃的半導(dǎo)體封裝測試生產(chǎn)周期預(yù)測[A];中國系統(tǒng)工程學(xué)會第十八屆學(xué)術(shù)年會論文集——A05系統(tǒng)工程理論應(yīng)用與創(chuàng)新[C];2014年

2 王慶明;;RTM工業(yè)化生產(chǎn)周期的控制[A];第十五屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會論文集[C];2003年

3 王慶明;;RTM工業(yè)化生產(chǎn)周期的控制[A];第十五屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會論文集[C];2003年

4 陳琦;馬向陽;;非理想狀態(tài)下產(chǎn)品的生產(chǎn)策略[A];2009年中國智能自動化會議論文集(第六分冊)[中南大學(xué)學(xué)報(增刊)][C];2009年

相關(guān)重要報紙文章 前1條

1 本報記者 石建芬 通訊員 焦剛 楊博峰;“小管理”實(shí)現(xiàn)高效率[N];中國石化報;2013年

相關(guān)碩士學(xué)位論文 前7條

1 李鵬;多入口多出口無阻塞串行生產(chǎn)線的周期性能[D];河北師范大學(xué);2015年

2 胡強(qiáng);芯片封裝測試生產(chǎn)線生產(chǎn)周期預(yù)測與優(yōu)化研究[D];電子科技大學(xué);2014年

3 王亞夢;煉鋼產(chǎn)品質(zhì)量和合同生產(chǎn)周期解析[D];東北大學(xué);2014年

4 阿瑞(Enrico Smiderle);在機(jī)床裝配情況中生產(chǎn)周期的縮減[D];清華大學(xué);2013年

5 郭光周;FHDH公司縮短R產(chǎn)品生產(chǎn)周期的研究[D];華南理工大學(xué);2014年

6 孫文暉;基于價值流圖析技術(shù)的縮短產(chǎn)品生產(chǎn)周期應(yīng)用研究[D];上海交通大學(xué);2007年

7 陳榮登;基于物料流動的A公司Y產(chǎn)品生產(chǎn)周期改善研究[D];華南理工大學(xué);2014年



本文編號:1852306

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/gongyejingjilunwen/1852306.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶37dd3***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com