基于多特征索引的服飾檢索和后驗證過程
[Abstract]:With the rapid development of e-commerce, the new online shopping mode has slowly replaced the traditional physical shop shopping mode. Especially reflected in the selection and purchase of clothing, online shopping compared to physical stores to go back and forth shopping more reflected its advantages. By clicking on the mouse, we can make it possible to browse all kinds of clothing on the Internet and pick out the clothes we like from the vast amount of clothing. But nowadays, most of the shopping websites are based on the form of product labels, that is, by adding labels to the clothing in advance, and searching the clothing by keywords. Because there are a lot of subjective differences in language description, and when we see other people's beautiful clothes on the street, or when we see our favorite clothes on movies, television, or the Internet, When we want to find similar clothing on the Internet, we can't describe it as accurately as we can, and then search for the same style of clothing. So it is very important to design a system to retrieve similar images by target images. People only need to input the clothing images they want to query and then they can retrieve the similar clothing accurately. This paper presents a multi-feature index-based clothing retrieval and post-verification process. The experimental results show that this method has a good accuracy in a large number of image databases. This paper mainly consists of the following four parts: (1) the first part of the work is to pre-process the image through SMQT features and SNOW classifier to achieve face detection. When a query image is inputted, the position of the face in the image will be detected by the method of face detection. Then know the location of the face will be able to roughly determine the location of the dress. When we determine the position of the dress in the input image, the Grab Cut algorithm is used to segment the image to get the region of the dress in the image. After pre-processing, only the dress regions in the original image are preserved. (2) in the traditional BOW retrieval framework, we add the color descriptor (CN), to enhance the matching of the color features. At the same time, the sift feature and color feature are added to the frame of double multi-dimensional index to match the features. (3) aiming at the quantized visual words of BOW model, the discrimination ability of local region is reduced and the geometric relationship between features is not possessed. Therefore, we propose a geometric post-verification method based on feature scale to verify the wrong matching features. This post-validation method is a process of removing mismatched points and re-scoring candidate images according to several relations between features. (4) the proposed method is verified by experiments and the horizontal comparison between the proposed method and the cross-sectional comparison in the detection process is carried out. The effect of each improvement in the cable frame on the accuracy of the experiment. Experimental results can be obtained in a large number of images in the database of our method has achieved good results.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳芳;一種基于錯切原理的圖像旋轉(zhuǎn)方法[J];淮陰師范學(xué)院學(xué)報(自然科學(xué)版);2004年04期
2 李少芳;陳德禮;;數(shù)字圖像旋轉(zhuǎn)實現(xiàn)的探討[J];計算機(jī)與現(xiàn)代化;2007年09期
3 李峰;;交互式、可控制圖像旋轉(zhuǎn)[J];電腦編程技巧與維護(hù);2008年09期
4 趙琰;魏為民;;用于圖像認(rèn)證和竄改檢測的穩(wěn)健圖像摘要[J];計算機(jī)應(yīng)用研究;2011年05期
5 王濱海;許正飛;陳西廣;張海龍;邵瑞雪;;圖像旋轉(zhuǎn)算法的分析與對比[J];光學(xué)與光電技術(shù);2011年02期
6 陶德元,李舒平,周激流;消除圖像旋轉(zhuǎn)失真的方法[J];數(shù)據(jù)采集與處理;1991年04期
7 李偉青;圖像旋轉(zhuǎn)的快速顯示技術(shù)[J];計算機(jī)應(yīng)用研究;1994年03期
8 沈定剛,戚飛虎;任意圖像的主方向定位[J];上海交通大學(xué)學(xué)報;1995年04期
9 曹建;變換圖像及與其它圖像程序的結(jié)合使用技術(shù)[J];軟件世界;1996年06期
10 丁宏慶;數(shù)字圖像旋轉(zhuǎn)的硬件實現(xiàn)[J];電子技術(shù);1998年12期
相關(guān)會議論文 前4條
1 魯傳運;黃言平;季托;;圖像旋轉(zhuǎn)不變特征特性研究[A];第九屆全國光電技術(shù)學(xué)術(shù)交流會論文集(下冊)[C];2010年
2 唐振軍;王朔中;魏為民;張新鵬;;利用分塊相似系數(shù)構(gòu)造感知圖像Hash[A];第八屆全國信息隱藏與多媒體安全學(xué)術(shù)大會湖南省計算機(jī)學(xué)會第十一屆學(xué)術(shù)年會論文集[C];2009年
3 王彥錕;劉方;;一種快速穩(wěn)健的圖像旋轉(zhuǎn)角度估計算法[A];計算機(jī)技術(shù)與應(yīng)用進(jìn)展·2007——全國第18屆計算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集[C];2007年
4 王炳健;樓紅斌;盧剛;劉上乾;;多模光電圖像配準(zhǔn)算法性能評估[A];2011西部光子學(xué)學(xué)術(shù)會議論文摘要集[C];2011年
相關(guān)重要報紙文章 前3條
1 奇妙天堂;PowerPoint XP玩轉(zhuǎn)圖象輕松做[N];中國電腦教育報;2003年
2 曉峰;EPC圖像轉(zhuǎn)換專家:批量轉(zhuǎn)換的得力助手[N];中國攝影報;2005年
3 小鴨;掃描一點通[N];電腦報;2001年
相關(guān)博士學(xué)位論文 前4條
1 謝博捚;圖像特征表示的學(xué)習(xí)算法研究[D];北京交通大學(xué);2016年
2 林春雨;圖像/視頻的多描述編碼及傳輸[D];北京交通大學(xué);2010年
3 高光勇;基于混沌和圖像矩的魯棒零水印技術(shù)研究[D];南京郵電大學(xué);2012年
4 李長松;空間太陽望遠(yuǎn)鏡穩(wěn)像系統(tǒng)中圖像相關(guān)器的研究[D];中國科學(xué)院研究生院(國家天文臺);2008年
相關(guān)碩士學(xué)位論文 前10條
1 劉霞;基于尺度不變與視覺顯著特征的圖像感知哈希技術(shù)研究[D];西南大學(xué);2015年
2 史力如;圖像與思維及重疊圖像式繪畫的探索[D];天津美術(shù)學(xué)院;2015年
3 王開芳;照片/素描及跨年齡階段異質(zhì)人臉的識別研究[D];山東大學(xué);2015年
4 董愛萍;小尺度圖像旋轉(zhuǎn)失真分析與矯正方法研究[D];大連海事大學(xué);2015年
5 袁征帆;基于安卓的火車客票管理系統(tǒng)的設(shè)計與實現(xiàn)[D];南京大學(xué);2014年
6 黃韻;基于詞袋模型和詞匯樹的圖像檢索技術(shù)研究[D];西安電子科技大學(xué);2014年
7 王東旭;基于快速檢索的圖像溯源軟件平臺[D];西安電子科技大學(xué);2014年
8 黃德志;基于改進(jìn)局部二值模式的圖像分類算法研究[D];吉林大學(xué);2016年
9 湯寰宇;基于多特征索引的服飾檢索和后驗證過程[D];吉林大學(xué);2016年
10 孫潔;基于隱支持向量機(jī)模型的個性化圖像推薦和檢索[D];北京交通大學(xué);2014年
,本文編號:2447589
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2447589.html