基于用戶聚類(lèi)的協(xié)同過(guò)濾推薦算法研究
[Abstract]:With the popularity of the Internet, a large number of meaningless data for people to screen effective information has brought great difficulties. In order to help people to screen information quickly and effectively, personalized recommendation system emerges as the times require. As the core of recommendation system, recommendation algorithm has always been the focus of research. Among the many recommendation algorithms, collaborative filtering algorithm is the most widely used. The collaborative filtering algorithm discovers the user's preference by mining the user's historical behavior data, and then groups the users based on different preferences and recommends the items with similar taste. However, with the increasing number of users and items in e-commerce system, the sparsity of data and the efficiency of recommendation gradually become the bottleneck to restrict the development of collaborative filtering algorithm. In order to improve the recommendation quality and efficiency of collaborative filtering algorithm, this paper proposes an improved collaborative filtering recommendation algorithm based on user clustering, and designs and implements a movie recommendation system based on the improved algorithm. This paper introduces the development background and architecture design of personalized recommendation system, gives the basic idea and main problems of traditional collaborative filtering algorithm, and improves the traditional algorithm from two aspects: off-line user clustering and user similarity calculation. The improvement of the algorithm is mainly reflected in two aspects: first, considering the influence of user rating information and item class preference information on user clustering, a joint user clustering algorithm is proposed. Based on the user rating information and item class preference information, the algorithm clusters the basic users respectively, and generates two clustering centers and two user categories belong to the matrix. The similarity between the target user and the two clustering centers and the cluster belonging to the target user in different clusters are calculated. The nearest neighbor search space of the target user is obtained after the result is merged and deduplicated. Secondly, aiming at the problem that the traditional Pearson correlation coefficient is insensitive to absolute value when calculating the similarity degree, a weighted Pearson correlation coefficient calculation method based on the difference factor is proposed, in which the score difference factor is used as the weight to correct the traditional Pearson correlation coefficient. Using MovieLens data set and mae value, accuracy rate, recall rate and F1 value as metrics, the improved algorithm is improved by multi-group experiments, and the traditional user-based collaborative filtering algorithm (CF), is used. The traditional collaborative filtering algorithm based on user clustering (UCCF) is evaluated. The experimental results show that the improved algorithm can effectively improve the recommendation efficiency and accuracy of the recommendation system. In this paper, a movie recommendation system is designed and implemented based on the improved algorithm. The system uses Douban Top250 movie information as data set and mixed programming with PHP and Matlab, which can provide personalized recommendation service to users according to their preference information.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.3
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 王宇飛;宋俊典;戴炳榮;;基于用戶評(píng)分和項(xiàng)目類(lèi)偏好的協(xié)同過(guò)濾推薦算法[J];軟件導(dǎo)刊;2016年12期
2 陳功平;王紅;;改進(jìn)Pearson相關(guān)系數(shù)的個(gè)性化推薦算法[J];山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年06期
3 張栩晨;;利用Tri-training算法解決推薦系統(tǒng)冷啟動(dòng)問(wèn)題[J];計(jì)算機(jī)科學(xué);2016年12期
4 魏慧娟;戴牡紅;寧勇余;;基于最近鄰居聚類(lèi)的協(xié)同過(guò)濾推薦算法[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2016年09期
5 王興茂;張興明;吳毅濤;潘俊池;;基于啟發(fā)式聚類(lèi)模型和類(lèi)別相似度的協(xié)同過(guò)濾推薦算法[J];電子學(xué)報(bào);2016年07期
6 黃濤;黃仁;張坤;;一種改進(jìn)的協(xié)同過(guò)濾推薦算法[J];計(jì)算機(jī)科學(xué);2016年S1期
7 邱爽;葛萬(wàn)成;汪亮友;林佳燕;;個(gè)性化推薦中基于用戶協(xié)同過(guò)濾算法的優(yōu)化[J];信息技術(shù);2016年03期
8 趙宏晨;翟麗麗;張樹(shù)臣;;基于灰色關(guān)聯(lián)度聚類(lèi)與標(biāo)簽重疊因子結(jié)合的協(xié)同過(guò)濾推薦方法研究[J];計(jì)算機(jī)工程與科學(xué);2016年01期
9 原福永;馬琳;梁順攀;;融合用戶相似度和信任傳播重組信任矩陣算法[J];燕山大學(xué)學(xué)報(bào);2015年06期
10 李艷萍;劉明;于麗梅;;個(gè)性化信息服務(wù)網(wǎng)絡(luò)系統(tǒng)架構(gòu)研究[J];數(shù)字技術(shù)與應(yīng)用;2015年09期
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 蒲彬;基于社交信號(hào)的個(gè)性化新聞推薦系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];中國(guó)科學(xué)院大學(xué)(工程管理與信息技術(shù)學(xué)院);2015年
,本文編號(hào):2436505
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2436505.html