基于B2C電子商務(wù)數(shù)據(jù)倉(cāng)庫(kù)的研究與設(shè)計(jì)
[Abstract]:B2C e-commerce website system generates a large amount of product transaction data and access log data every day, which contains a lot of valuable information, such as the source of orders, the behavior of customers, the interest of visitors and so on. The analysis of these data can not only help the decision makers to guide the operation of B2C e-commerce website, attract more users, but also can reflect the marketing and sales promotion of enterprises. After-sales service and financial management and other aspects of the situation. In a word, in-depth and effective analysis of these data can help managers to improve customer relations and enhance the competitiveness of all aspects of the enterprise. On the basis of describing the relevant theories of data warehouse, including the concept, basic characteristics, system structure, concept of B2C electronic commerce and OLAP multidimensional data analysis, this paper puts forward a perfect data warehouse model of B2C electronic commerce. The main work of this paper is as follows: 1. Based on the analysis of user requirements of B2C e-commerce data warehouse, a multi-level conceptual model of B2C e-commerce data warehouse is proposed, and the related dimension model and fact set are designed. Based on the model, the physical design of some dimension tables and fact tables is completed. 2. The data source of B2C e-commerce data warehouse is analyzed and the semi-structured data source processing is discussed. An improved session recognition algorithm of page media type time threshold is proposed for Web access log combined with the pre-processing method of semi-structured data. Through different URL page types, different page time threshold calculation method is adopted. Compared with the existing user access pages using a single prior threshold and the existing dynamic threshold calculation, this method can more truly reflect the user session, and the recognition accuracy has been greatly improved. Provide efficient and accurate data for subsequent analysis. 3. Based on the B2C e-commerce data warehouse model proposed in this paper, an experimental B2C e-commerce data warehouse project is constructed. Taking the Zen Cart website system as an example, the analysis topic is determined and based on the idea of multidimensional modeling, different grained dimensions, data marts are established, and a ETL architecture is designed, including ETL scheduling scheme, data preprocessing method and so on. Finally, the online analysis of order data is carried out to show the value of B 2 C e-commerce data warehouse. The B2C electronic commerce data warehouse model proposed in this paper has the following characteristics: 1. The model has the characteristics of pertinence and practicability. It involves all the main aspects of the enterprise in both internal and external e-commerce trade activities, including page clicks, product sales, orders, users' comments on products, sales profits, warehouses, etc. Order products, logistics distribution, etc. 2. The model adopts multi-level dimension design and provides a better perspective for enterprise decision making through rational and effective conceptual stratification. Finally, the validity of the model is verified by experiments.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 殷賢亮;張為;;Web使用挖掘中的一種改進(jìn)的會(huì)話識(shí)別方法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年07期
2 方元康;胡學(xué)鋼;夏啟壽;;Web日志預(yù)處理中優(yōu)化的會(huì)話識(shí)別方法[J];計(jì)算機(jī)工程;2009年07期
3 李燕;馮博琴;魯曉鋒;;Web日志挖掘中的數(shù)據(jù)預(yù)處理技術(shù)[J];計(jì)算機(jī)工程;2009年22期
4 范純龍;姜宏飛;李華;;利用圖片類日志信息改進(jìn)會(huì)話識(shí)別質(zhì)量[J];計(jì)算機(jī)應(yīng)用;2010年04期
5 楊富華;;網(wǎng)絡(luò)日志預(yù)處理中優(yōu)化的會(huì)話識(shí)別算法[J];計(jì)算機(jī)仿真;2011年04期
6 蔡浩;賈宇波;黃成偉;黃志強(qiáng);;Web日志挖掘中的會(huì)話識(shí)別算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年06期
7 周愛武;程博;李孫長(zhǎng);夏松;;Web日志挖掘中的會(huì)話識(shí)別方法[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年05期
相關(guān)碩士學(xué)位論文 前10條
1 皮濤;基于Lucene的面向主題信息搜索系統(tǒng)的關(guān)鍵技術(shù)分析及應(yīng)用[D];武漢理工大學(xué);2011年
2 周慶華;面向電子商務(wù)的數(shù)據(jù)挖掘研究與實(shí)現(xiàn)[D];中國(guó)人民解放軍國(guó)防科學(xué)技術(shù)大學(xué);2002年
3 張開松;基于Web技術(shù)的數(shù)據(jù)倉(cāng)庫(kù)研究與設(shè)計(jì)[D];武漢理工大學(xué);2005年
4 岳志強(qiáng);制造企業(yè)銷售信息處理及分析系統(tǒng)研究[D];大連交通大學(xué);2005年
5 徐益軍;電子商務(wù)公共服務(wù)平臺(tái)下的Web挖掘系統(tǒng)研究[D];天津工業(yè)大學(xué);2006年
6 卜建峰;電子商務(wù)系統(tǒng)中數(shù)據(jù)融合與OLAP的研究與設(shè)計(jì)[D];西北工業(yè)大學(xué);2007年
7 李勇;數(shù)據(jù)挖掘的算法研究及其在Web日志分析中的應(yīng)用[D];長(zhǎng)春理工大學(xué);2008年
8 張弛;開源OLAP技術(shù)在多媒體教學(xué)系統(tǒng)中的應(yīng)用研究[D];北京郵電大學(xué);2009年
9 蔡俊;基于數(shù)據(jù)倉(cāng)庫(kù)的點(diǎn)擊流技術(shù)的研究[D];江蘇大學(xué);2009年
10 王立;OLAP在視頻網(wǎng)站日志分析中的應(yīng)用[D];東華大學(xué);2010年
,本文編號(hào):2307936
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2307936.html