基于協(xié)同過濾的圖書館個(gè)性化推薦方法的研究
[Abstract]:Today is an era of "information explosion". Internet provides people with a lot of information resources, in which there are a lot of valuable knowledge. But in the face of these information, people enjoy the convenience of information, but also feel at a loss, we call this phenomenon "information overload", or "information lost". Therefore, how to quickly help users to find the information they want from many information becomes the urgent need of users. Personalized recommendation system appeared in time. Personalized recommendation system is an intelligent system, which can provide personalized services to users according to their interests. It filters out excess data according to a certain algorithm and recommends valuable items directly to users. To a large extent, the cost of user search resources is reduced. In fact, personalized recommendation system has become one of the most effective tools to solve information overload. Collaborative filtering is one of the core technologies of recommendation system (Recommender System), and it is also the most widely used and successful technology. Unlike many traditional algorithms, collaborative filtering is independent of the content of the project, so it is easy to implement and has been adopted by many large websites. In recent years, the research of recommendation system is not only limited to the algorithm, but also has a lot of research hotspot in application. For example: e-commerce, library and so on, university library is one of the hot spots. This paper aims at solving the problems in the application of collaborative filtering algorithm, such as cold start, low user satisfaction and so on. In view of collaborative filtering algorithm of recommendation system, we have done the following theoretical research and application work in this paper: (1) We have comprehensively studied the domestic and foreign research in the field of collaborative filtering, and expounded the working process and basic categories of collaborative filtering. The basic ideas and key problems of collaborative filtering are pointed out. (2) aiming at many problems of collaborative filtering, a similarity calculation method based on item features and user attributes is proposed. This paper makes full use of the inherent characteristics of books and users in university libraries and avoids the problems of data sparsity and cold startup. (3) this paper makes a detailed analysis of the related problems in the traditional clustering algorithm. An improved algorithm which can automatically generate K initial centers with relatively uniform distribution is proposed, and the idea of matching tree is proposed creatively. (4) aiming at the problem of user score sparsity, combining the project-based clustering algorithm and the improved similarity calculation method to replace the traditional score similarity to find neighbors, the cold start problem is avoided and the new user is alleviated. The conundrum of a new project Improve the accuracy of recommendation and user satisfaction. Based on the above research, this paper proposes the concept of user attribute similarity and active similarity in library, and integrates the ideas of many algorithms, and finally forms a hybrid collaborative filtering recommendation algorithm. The experimental results show that the improved algorithm can effectively improve the accuracy of recommendation and alleviate the cold start problem to some extent.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱俚治;;一種基于決策系統(tǒng)和決策樹的誤用檢測算法[J];計(jì)算機(jī)與數(shù)字工程;2016年12期
2 張明微;吳海濤;;一種優(yōu)化初始聚類中心的k-means算法[J];上海師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
3 張靜博;;網(wǎng)絡(luò)背景下數(shù)字圖書館發(fā)展與創(chuàng)新研究[J];河南科技;2015年23期
4 黨永杰;鄭世玨;明均仁;;多維視角下移動(dòng)圖書館用戶偏好模型構(gòu)建研究[J];情報(bào)理論與實(shí)踐;2016年01期
5 曾子明;金鵬;;基于用戶興趣變化的數(shù)字圖書館知識推薦服務(wù)研究[J];圖書館論壇;2016年01期
6 蘇新寧;;大數(shù)據(jù)時(shí)代數(shù)字圖書館面臨的機(jī)遇和挑戰(zhàn)[J];中國圖書館學(xué)報(bào);2015年06期
7 郭順利;李秀霞;;基于情境感知的移動(dòng)圖書館用戶信息需求模型構(gòu)建[J];情報(bào)理論與實(shí)踐;2014年08期
8 張曉林;;顛覆數(shù)字圖書館的大趨勢[J];中國圖書館學(xué)報(bào);2011年05期
9 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
10 周愛武;于亞飛;;K-Means聚類算法的研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2011年02期
相關(guān)博士學(xué)位論文 前2條
1 周玲元;圖書館情境感知服務(wù)模型及應(yīng)用研究[D];南昌大學(xué);2015年
2 夏培勇;個(gè)性化推薦技術(shù)中的協(xié)同過濾算法研究[D];中國海洋大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 周鯤;基于用戶相似度的協(xié)同過濾推薦算法研究[D];西南交通大學(xué);2016年
2 王海燕;電子商務(wù)協(xié)同過濾推薦算法的優(yōu)化研究[D];河北工程大學(xué);2016年
3 翟艷萍;基于UTAUT模型的圖書館移動(dòng)信息服務(wù)研究[D];山東大學(xué);2016年
4 趙冰;數(shù)據(jù)挖掘技術(shù)在公安院校圖書館個(gè)性化推薦中的應(yīng)用研究[D];長春工業(yè)大學(xué);2016年
5 路春霞;個(gè)性化推薦中協(xié)同過濾算法研究[D];北京交通大學(xué);2016年
6 鄭麗姣;個(gè)性化推薦技術(shù)在高校數(shù)字圖書館中的應(yīng)用研究[D];湖南科技大學(xué);2015年
7 董曉梅;圖書借閱系統(tǒng)中的協(xié)同過濾推薦技術(shù)研究[D];大連理工大學(xué);2015年
8 張猛;基于領(lǐng)域本體的個(gè)性化旅游推薦系統(tǒng)的研究與實(shí)現(xiàn)[D];重慶大學(xué);2015年
9 牛意熹;基于知識情境的數(shù)字圖書館個(gè)性化推薦系統(tǒng)的研究[D];南昌大學(xué);2014年
10 袁利;基于聚類的協(xié)同過濾個(gè)性化推薦算法研究[D];華中師范大學(xué);2014年
,本文編號:2275963
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2275963.html