基于移動設備的室內定位與導航
[Abstract]:With the development of wireless network technology and the rapid development of modern city construction, Location Based Services (LBS) has shown tremendous vitality in many aspects, such as personal location service, medical field, electronic commerce, emergency rescue, smart home and so on. It has become a hot research topic in recent years. High-precision indoor positioning and navigation technology is the foundation and key to realize LBS. Traditional GPS (Global Positioning System) and cellular mobile communication technology have higher positioning accuracy outdoors, but GPS signals in indoor environment will be blocked, resulting in a significant reduction in positioning accuracy. Bit technology, from the deployment cost, positioning accuracy, post-maintenance, transmission speed, portability and other aspects of a comprehensive consideration, based on WiFi (Wireless Fidelity) Received Signal Strength (RSS) indoor positioning technology does not require the deployment of other hardware devices, by making full use of existing WiFi facilities, you can have any WiFi module. However, RSS is susceptible to external environment interference, which seriously affects the stability and accuracy of indoor positioning system. Simple WiFi-based positioning can not meet the accuracy requirements of indoor positioning services. Based on the analysis of the characteristics of the reception intensity of WiFi signals, an indoor localization algorithm based on information fusion is proposed. The location algorithm of WiFi position fingerprint based on RSS and Pedestrian Dead Reckoning (PDR) are fused by Kalman filter to realize the localization, and the indoor localization is realized on the intelligent mobile terminal. The main contents and innovations of this paper include: (1) the construction of three-dimensional indoor space model. The indoor space model with clear structure, good expressive ability and visual effect is the foundation of indoor LBS. Compared with outdoor environment, the complexity of indoor space structure has a great impact on indoor modeling. According to the existing indoor data files, this paper designs and constructs a three-dimensional indoor space network model based on "node-arc" structure to express the spatial attributes and topological structure of indoor space elements, which is the basis of map visualization and indoor navigation. The principle of axes extraction realizes the automatic extraction of building single-layer path and improves the efficiency of modeling. (2) An improved location fingerprint method based on RSS is proposed. WKNN (Weighted K-Nearest Neighbor) indoor localization algorithm based on WKNN (Weighted K-Nearest Neighbor) achieves more accurate indoor localization. At the same time, by using different access point (AP) selection and matching mechanism, redundant AP data is removed and AP localization subset is optimized to improve the efficiency and accuracy of localization algorithm. The algorithm presented in this paper improves the real-time performance and positioning accuracy. In the experimental environment, a location fingerprint database is created with a sampling interval of 1.5 meters, and the average positioning error is 1.68 m when six APs are used for positioning. (3) Multi-data fusion indoor real-time tracking and navigation based on Kalman filtering. In the navigation process, the location fingerprint localization algorithm based on RSS is vulnerable to the influence of indoor environment changes, there is instability and low precision in the location, and there is also irregular jumping phenomenon in the position description of moving objects; PDR algorithm can directly use the sensors of mobile devices to estimate the state of pedestrian movement. In this paper, Kalman filter is established to fuse the positioning information and smooth the trajectory, so as to achieve high precision indoor real-time dynamic positioning accuracy in the process of indoor navigation. In order to reduce the cumulative positioning error of the linear motion model at the turning point, the device barometer data is used to identify the user's upstairs and downstairs behavior in the navigation process, and the multi-floor positioning and navigation system suitable for intelligent mobile devices is realized. The average positioning error is 1.2m. Compared with PDR and WiFi, the algorithm is the most stable in cumulative error over time.
【學位授予單位】:華東師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN92
【相似文獻】
相關期刊論文 前10條
1 ;室內定位蓄勢待發(fā)[J];建材發(fā)展導向;2013年06期
2 趙軍;李鴻斌;王智;;無線網(wǎng)絡室內定位系統(tǒng)研究[J];信息與控制;2008年04期
3 梁韻基;周興社;於志文;倪紅波;;普適環(huán)境室內定位系統(tǒng)研究[J];計算機科學;2010年03期
4 汪苑;林錦國;;幾種常用室內定位技術的探討[J];中國儀器儀表;2011年02期
5 王麗英;;導航發(fā)展的新熱點——室內定位[J];今日電子;2011年12期
6 ;衛(wèi)星信號易被干擾 室內定位技術解析[J];金卡工程;2012年07期
7 李振;姚以鵬;;大型公共場館智能室內定位導游系統(tǒng)的技術研究[J];廣東科技;2013年12期
8 袁飛;;淺談室內定位與機場旅客個性化服務[J];中國科技信息;2014年08期
9 張玉梅;康曉霞;;救援隊員室內定位技術分析[J];消防科學與技術;2012年06期
10 楊華;劉軍發(fā);陳益強;;一種基于多終端動態(tài)協(xié)同的室內定位方法[J];計算機應用研究;2012年07期
相關會議論文 前8條
1 張立立;鐘耳順;;無線室內定位技術[A];中國地理信息系統(tǒng)協(xié)會第八屆年會論文集[C];2004年
2 郭明濤;李文元;龔福春;;室內定位方法分析[A];2007北京地區(qū)高校研究生學術交流會通信與信息技術會議論文集(下冊)[C];2008年
3 郭旭斌;葉長城;王憶文;李輝;;基于無線傳感器網(wǎng)絡的室內定位系統(tǒng)[A];第十五屆計算機工程與工藝年會暨第一屆微處理器技術論壇論文集(A輯)[C];2011年
4 房秉毅;李熹;;超寬帶室內定位系統(tǒng)研究[A];2005年全國超寬帶無線通信技術學術會議論文集[C];2005年
5 高雪晨;蔣泰;曹林峰;;基于RFID的室內定位系統(tǒng)設計[A];廣西計算機學會2012年學術年會論文集[C];2012年
6 徐勁松;盧曉春;邊玉敬;;基于UWB的室內定位系統(tǒng)設計與仿真[A];2009全國時間頻率學術會議論文集[C];2009年
7 雷地球;羅海勇;劉曉明;;一種基于WiFi的室內定位系統(tǒng)設計與實現(xiàn)[A];第六屆和諧人機環(huán)境聯(lián)合學術會議(HHME2010)、第19屆全國多媒體學術會議(NCMT2010)、第6屆全國人機交互學術會議(CHCI2010)、第5屆全國普適計算學術會議(PCC2010)論文集[C];2010年
8 胡斌;宋娜娜;;基于航位推測技術的消防人員室內定位系統(tǒng)研究[A];2014中國消防協(xié)會科學技術年會論文集[C];2014年
相關重要報紙文章 前10條
1 本報記者 馬靜t,
本文編號:2180797
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2180797.html