基于移動(dòng)設(shè)備的室內(nèi)定位與導(dǎo)航
[Abstract]:With the development of wireless network technology and the rapid development of modern city construction, Location Based Services (LBS) has shown tremendous vitality in many aspects, such as personal location service, medical field, electronic commerce, emergency rescue, smart home and so on. It has become a hot research topic in recent years. High-precision indoor positioning and navigation technology is the foundation and key to realize LBS. Traditional GPS (Global Positioning System) and cellular mobile communication technology have higher positioning accuracy outdoors, but GPS signals in indoor environment will be blocked, resulting in a significant reduction in positioning accuracy. Bit technology, from the deployment cost, positioning accuracy, post-maintenance, transmission speed, portability and other aspects of a comprehensive consideration, based on WiFi (Wireless Fidelity) Received Signal Strength (RSS) indoor positioning technology does not require the deployment of other hardware devices, by making full use of existing WiFi facilities, you can have any WiFi module. However, RSS is susceptible to external environment interference, which seriously affects the stability and accuracy of indoor positioning system. Simple WiFi-based positioning can not meet the accuracy requirements of indoor positioning services. Based on the analysis of the characteristics of the reception intensity of WiFi signals, an indoor localization algorithm based on information fusion is proposed. The location algorithm of WiFi position fingerprint based on RSS and Pedestrian Dead Reckoning (PDR) are fused by Kalman filter to realize the localization, and the indoor localization is realized on the intelligent mobile terminal. The main contents and innovations of this paper include: (1) the construction of three-dimensional indoor space model. The indoor space model with clear structure, good expressive ability and visual effect is the foundation of indoor LBS. Compared with outdoor environment, the complexity of indoor space structure has a great impact on indoor modeling. According to the existing indoor data files, this paper designs and constructs a three-dimensional indoor space network model based on "node-arc" structure to express the spatial attributes and topological structure of indoor space elements, which is the basis of map visualization and indoor navigation. The principle of axes extraction realizes the automatic extraction of building single-layer path and improves the efficiency of modeling. (2) An improved location fingerprint method based on RSS is proposed. WKNN (Weighted K-Nearest Neighbor) indoor localization algorithm based on WKNN (Weighted K-Nearest Neighbor) achieves more accurate indoor localization. At the same time, by using different access point (AP) selection and matching mechanism, redundant AP data is removed and AP localization subset is optimized to improve the efficiency and accuracy of localization algorithm. The algorithm presented in this paper improves the real-time performance and positioning accuracy. In the experimental environment, a location fingerprint database is created with a sampling interval of 1.5 meters, and the average positioning error is 1.68 m when six APs are used for positioning. (3) Multi-data fusion indoor real-time tracking and navigation based on Kalman filtering. In the navigation process, the location fingerprint localization algorithm based on RSS is vulnerable to the influence of indoor environment changes, there is instability and low precision in the location, and there is also irregular jumping phenomenon in the position description of moving objects; PDR algorithm can directly use the sensors of mobile devices to estimate the state of pedestrian movement. In this paper, Kalman filter is established to fuse the positioning information and smooth the trajectory, so as to achieve high precision indoor real-time dynamic positioning accuracy in the process of indoor navigation. In order to reduce the cumulative positioning error of the linear motion model at the turning point, the device barometer data is used to identify the user's upstairs and downstairs behavior in the navigation process, and the multi-floor positioning and navigation system suitable for intelligent mobile devices is realized. The average positioning error is 1.2m. Compared with PDR and WiFi, the algorithm is the most stable in cumulative error over time.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN92
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;室內(nèi)定位蓄勢(shì)待發(fā)[J];建材發(fā)展導(dǎo)向;2013年06期
2 趙軍;李鴻斌;王智;;無(wú)線網(wǎng)絡(luò)室內(nèi)定位系統(tǒng)研究[J];信息與控制;2008年04期
3 梁韻基;周興社;於志文;倪紅波;;普適環(huán)境室內(nèi)定位系統(tǒng)研究[J];計(jì)算機(jī)科學(xué);2010年03期
4 汪苑;林錦國(guó);;幾種常用室內(nèi)定位技術(shù)的探討[J];中國(guó)儀器儀表;2011年02期
5 王麗英;;導(dǎo)航發(fā)展的新熱點(diǎn)——室內(nèi)定位[J];今日電子;2011年12期
6 ;衛(wèi)星信號(hào)易被干擾 室內(nèi)定位技術(shù)解析[J];金卡工程;2012年07期
7 李振;姚以鵬;;大型公共場(chǎng)館智能室內(nèi)定位導(dǎo)游系統(tǒng)的技術(shù)研究[J];廣東科技;2013年12期
8 袁飛;;淺談室內(nèi)定位與機(jī)場(chǎng)旅客個(gè)性化服務(wù)[J];中國(guó)科技信息;2014年08期
9 張玉梅;康曉霞;;救援隊(duì)員室內(nèi)定位技術(shù)分析[J];消防科學(xué)與技術(shù);2012年06期
10 楊華;劉軍發(fā);陳益強(qiáng);;一種基于多終端動(dòng)態(tài)協(xié)同的室內(nèi)定位方法[J];計(jì)算機(jī)應(yīng)用研究;2012年07期
相關(guān)會(huì)議論文 前8條
1 張立立;鐘耳順;;無(wú)線室內(nèi)定位技術(shù)[A];中國(guó)地理信息系統(tǒng)協(xié)會(huì)第八屆年會(huì)論文集[C];2004年
2 郭明濤;李文元;龔福春;;室內(nèi)定位方法分析[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(下冊(cè))[C];2008年
3 郭旭斌;葉長(zhǎng)城;王憶文;李輝;;基于無(wú)線傳感器網(wǎng)絡(luò)的室內(nèi)定位系統(tǒng)[A];第十五屆計(jì)算機(jī)工程與工藝年會(huì)暨第一屆微處理器技術(shù)論壇論文集(A輯)[C];2011年
4 房秉毅;李熹;;超寬帶室內(nèi)定位系統(tǒng)研究[A];2005年全國(guó)超寬帶無(wú)線通信技術(shù)學(xué)術(shù)會(huì)議論文集[C];2005年
5 高雪晨;蔣泰;曹林峰;;基于RFID的室內(nèi)定位系統(tǒng)設(shè)計(jì)[A];廣西計(jì)算機(jī)學(xué)會(huì)2012年學(xué)術(shù)年會(huì)論文集[C];2012年
6 徐勁松;盧曉春;邊玉敬;;基于UWB的室內(nèi)定位系統(tǒng)設(shè)計(jì)與仿真[A];2009全國(guó)時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年
7 雷地球;羅海勇;劉曉明;;一種基于WiFi的室內(nèi)定位系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[A];第六屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2010)、第19屆全國(guó)多媒體學(xué)術(shù)會(huì)議(NCMT2010)、第6屆全國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2010)、第5屆全國(guó)普適計(jì)算學(xué)術(shù)會(huì)議(PCC2010)論文集[C];2010年
8 胡斌;宋娜娜;;基于航位推測(cè)技術(shù)的消防人員室內(nèi)定位系統(tǒng)研究[A];2014中國(guó)消防協(xié)會(huì)科學(xué)技術(shù)年會(huì)論文集[C];2014年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 馬靜t,
本文編號(hào):2180797
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/2180797.html