結(jié)合用戶消費(fèi)水平的商品推薦算法研究
本文選題:協(xié)同過濾 + 用戶消費(fèi)水平 ; 參考:《東北師范大學(xué)》2016年碩士論文
【摘要】:近幾年,電子商務(wù)這一新興的購物模式伴隨著互聯(lián)網(wǎng)技術(shù)的飛速進(jìn)步逐步興起,成為在人群中十分風(fēng)行的一種新型購物渠道。相較于傳統(tǒng)的線下購物方式,電子商務(wù)具有非常多的優(yōu)勢,一方面由于具有龐大的網(wǎng)絡(luò)用戶,它可以給企業(yè)帶來更多的營業(yè)利潤,另一方面由于用戶足不出戶就可以隨意瀏覽國內(nèi)國外,各種各樣琳瑯滿目的商品信息,電子商務(wù)可以帶給使用者更加便捷更加舒適的消費(fèi)體驗。與此同時,我們依然不能忽視現(xiàn)有的電子商務(wù)推薦系統(tǒng)中顯現(xiàn)出的一些弊端。用戶往往在很多時候不能從極其龐大的商品海洋中準(zhǔn)確地找到本人中意的商品。在這種情況下,電子商務(wù)針對用戶的個性化推薦成為處理這一問題的一個非常有效之辦法。目前各種各樣有關(guān)于推薦方法的研究層出不窮。即便這樣仍會存在諸如數(shù)據(jù)稀疏,冷啟動,算法可擴(kuò)展性差之類的難題。如何突破這些技術(shù)瓶頸成為現(xiàn)在研究中的重點和難點。協(xié)同過濾算法是在個性化推薦上使用的最為廣泛的一項技術(shù),目前基于協(xié)同過濾算法的研究主要是基于用戶-項目評分這一角度來進(jìn)行各種各樣的改進(jìn)。本文認(rèn)為除了從評分這一方面來衡量用戶間的相似性,還可以利用用戶自身的一些因素來分析用戶的購物習(xí)慣。因此,本文的設(shè)想是把現(xiàn)有協(xié)同過濾推薦的推薦過程與用戶消費(fèi)水平因素進(jìn)行融合,認(rèn)為具有不同消費(fèi)水平的用戶群具備不同的商品傾向性。本文利用用戶背景信息以及購物記錄建立用戶的二級消費(fèi)水平模型,對評分矩陣進(jìn)行降維處理并對空缺項目評分預(yù)測評分值。然后結(jié)合用戶消費(fèi)水平和評分?jǐn)?shù)據(jù)得到綜合的用戶相似性,從根據(jù)消費(fèi)水平篩選后的用戶集中確定目標(biāo)用戶的最近鄰居集,最后在目標(biāo)用戶最近鄰居集的基礎(chǔ)上產(chǎn)生推薦項目集。本文在最后通過觀察實驗驗證得到的數(shù)據(jù)結(jié)果,將本文的改進(jìn)效果和傳統(tǒng)的協(xié)同過濾進(jìn)行對比,實驗證明結(jié)合用戶消費(fèi)水平的改進(jìn)推薦算法可以在傳統(tǒng)推薦算法的基礎(chǔ)上為用戶更加準(zhǔn)確的推薦傾向商品,并且在一定程度上緩解數(shù)據(jù)稀疏性問題以及新用戶問題,對于電子商務(wù)推薦系統(tǒng)的改進(jìn)有一定促進(jìn)作用。
[Abstract]:In recent years, with the rapid progress of Internet technology, E-commerce, a new shopping mode, has become a popular new shopping channel in the crowd. Compared with the traditional offline shopping mode, e-commerce has many advantages. On the one hand, it can bring more business profits to enterprises because of its huge network users. On the other hand, because users can browse at home and abroad without leaving home, various kinds of commodity information, electronic commerce can bring users more convenient and more comfortable consumption experience. At the same time, we still can not ignore the existing e-commerce recommendation system in the emergence of some drawbacks. Users are often unable to find their favorite goods accurately from the vast ocean of goods. In this case, e-commerce personalized recommendation for users becomes a very effective way to deal with this problem. At present, there are a variety of recommendations for the study of the endlessly. Even so, there will still be problems such as sparse data, cold start, poor scalability of algorithms and so on. How to break through these technical bottlenecks has become the focus and difficulty of current research. Collaborative filtering algorithm is the most widely used technology in personalized recommendation. At present, the research based on collaborative filtering algorithm is mainly based on the user-item score to carry out a variety of improvements. This paper holds that apart from measuring the similarity of users from the aspect of score, we can also use some factors of users to analyze their shopping habits. Therefore, the assumption of this paper is to merge the current recommendation process of collaborative filtering recommendation with the factors of user consumption level, and consider that users with different consumption levels have different propensity of goods. Based on the user background information and shopping records, this paper establishes a two-level consumption level model for users, then reduces the dimension of the score matrix and predicts the score value of the vacancy items. Then combined with the user consumption level and the score data to get the comprehensive user similarity, from the user set selected according to the consumption level to determine the target user's nearest neighbor set. Finally, the recommended item set is generated on the basis of the nearest neighbor set of the target user. At the end of this paper, the improved results are compared with the traditional collaborative filtering. The experimental results show that the improved recommendation algorithm combined with the user consumption level can more accurately recommend products for the user on the basis of the traditional recommendation algorithm, and to some extent alleviate the problem of data sparsity and the problem of new users. It can promote the improvement of e-commerce recommendation system.
【學(xué)位授予單位】:東北師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進(jìn)[J];計算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個性化推薦算法[J];計算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個性化推薦算法研究[J];電腦知識與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評價估計的混合推薦算法研究[J];微計算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(自然科學(xué)版);2011年03期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計算機(jī)應(yīng)用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務(wù)個性化推薦系統(tǒng)[A];社會經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第17屆學(xué)術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時推薦算法[A];第五屆全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:1968064
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/1968064.html