天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于AP聚類算法的推薦系統(tǒng)研究

發(fā)布時間:2018-05-22 15:18

  本文選題:推薦系統(tǒng) + 聚類 ; 參考:《河北大學(xué)》2017年碩士論文


【摘要】:進入21世紀以來,在互聯(lián)網(wǎng)和電子商務(wù)網(wǎng)站飛速發(fā)展的背景下,電子商務(wù)網(wǎng)站中的信息量變得更為龐大和復(fù)雜,繁冗的數(shù)據(jù)給電子商務(wù)的發(fā)展帶來巨大的挑戰(zhàn)。為了解決這一難題,針對電子商務(wù)的推薦系統(tǒng)應(yīng)運而生,電子商務(wù)推薦系統(tǒng)主要目的是幫助用戶迅速的定位到自己喜歡的商品。在目前主流的各種推薦算法中,協(xié)同過濾算法是一種應(yīng)用較廣的推薦算法,但傳統(tǒng)的協(xié)同過濾存在“稀疏性”、“冷啟動”和“可擴展性”等問題。近年來關(guān)于推薦系統(tǒng)的研究中,一些學(xué)者提出將聚類技術(shù)引入到推薦系統(tǒng)中用以解決上述問題。基于聚類的推薦算法通過先對用戶或者項目進行聚類劃分,使得相似度較高的對象聚集到同一個類中,從而簡化查找最近鄰居的過程,大大減小了整體計算復(fù)雜度和時間消耗。另外由于聚類過程可以在線下完成,所以大大提升了推薦系統(tǒng)整體的實時性。本文提出了基于AP聚類的推薦算法,主要研究內(nèi)容如下:(1)提出并設(shè)計了基于AP聚類的推薦算法。將AP聚類算法引入到推薦系統(tǒng)的用戶分類過程中,僅需要將目標用戶通過AP聚類方法進行分類,簡化查找最近鄰居和計算對象相似度的過程,降低了在整體計算中的復(fù)雜度和時間消耗。(2)傳統(tǒng)的AP聚類不包括類別的合并過程,使得聚類的精度較差,尤其是對結(jié)構(gòu)復(fù)雜的數(shù)據(jù)。本文提出了一種基于屬性加權(quán)的度量方法,基于此對AP聚類算法進行了改進。(3)設(shè)計并實現(xiàn)了基于改進AP聚類的推薦算法。在公共數(shù)據(jù)集上進行了仿真實驗,評價指標為平均絕對偏差(MAE)值,芮氏指標(RI)和純度指標(Purity),實驗結(jié)果表明了本文算法的有效性。
[Abstract]:Since the beginning of the 21st century, with the rapid development of the Internet and e-commerce websites, the amount of information in e-commerce websites has become larger and more complex, and the redundant data has brought great challenges to the development of e-commerce. In order to solve this problem, E-commerce recommendation system emerges as the times require. The main purpose of E-commerce recommendation system is to help users locate their favorite products quickly. Collaborative filtering is one of the most popular recommendation algorithms, but there are some problems in the traditional collaborative filtering, such as "sparsity", "cold start" and "expansibility". In recent years, in the research of recommendation system, some scholars have proposed to introduce clustering technology to the recommendation system to solve the above problems. The recommendation algorithm based on clustering makes objects with high similarity gather into the same class by clustering users or items, thus simplifying the process of finding nearest neighbors and greatly reducing the overall computational complexity and time consumption. In addition, the clustering process can be completed off-line, so it greatly improves the real-time performance of the recommendation system as a whole. This paper proposes a recommendation algorithm based on AP clustering. The main research contents are as follows: 1) A recommendation algorithm based on AP clustering is proposed and designed. The AP clustering algorithm is introduced into the user classification process of recommendation system. It is only necessary to classify the target users by AP clustering method to simplify the process of finding nearest neighbor and computing object similarity. It reduces the complexity and time consumption in the whole computation.) the traditional AP clustering does not include the merging process of the categories, which makes the accuracy of the clustering worse, especially for the data with complex structure. In this paper, an attribute weighted measurement method is proposed. Based on this, an improved AP clustering algorithm is designed and a recommendation algorithm based on improved AP clustering is implemented. Simulation experiments are carried out on common data sets. The evaluation indexes are mean absolute deviation (mae), Rui's index and purity index. The experimental results show the effectiveness of the proposed algorithm.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3

【參考文獻】

相關(guān)期刊論文 前10條

1 楊武;唐瑞;盧玲;;基于內(nèi)容的推薦與協(xié)同過濾融合的新聞推薦方法[J];計算機應(yīng)用;2016年02期

2 高全力;高嶺;楊建鋒;王海;;上下文感知推薦系統(tǒng)中基于用戶認知行為的偏好獲取方法[J];計算機學(xué)報;2015年09期

3 向培素;;一種自適應(yīng)AP算法的matlab實現(xiàn)[J];西南民族大學(xué)學(xué)報(自然科學(xué)版);2014年06期

4 寧麗娜;趙龍;陶洪波;趙成林;;基于AP聚類的數(shù)字信號調(diào)制體制識別方法[J];無線電工程;2013年12期

5 李慧;馬小平;胡云;施s,

本文編號:1922609


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/1922609.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0dd2d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
人体偷拍一区二区三区| 国产精品不卡一区二区三区四区| 国产午夜精品久久福利| 欧美日韩国产自拍亚洲| 久久中文字幕中文字幕中文| 五月激情五月天综合网| 在线视频免费看你懂的| 国产爆操白丝美女在线观看| 欧美91精品国产自产| 亚洲中文字幕在线视频频道| 亚洲天堂精品一区二区| 日本本亚洲三级在线播放| 99久久国产精品免费| 亚洲中文字幕免费人妻| 伊人欧美一区二区三区| 欧美有码黄片免费在线视频| 少妇高潮呻吟浪语91| 精产国品一二三区麻豆| 欧洲日本亚洲一区二区| 亚洲欧美日韩在线中文字幕| 欧美激情床戏一区二区三| 日本福利写真在线观看| 欧美韩日在线观看一区| 色无极东京热男人的天堂| 午夜日韩在线观看视频| 日本午夜乱色视频在线观看| 国产午夜免费在线视频| 91亚洲熟女少妇在线观看| 色丁香一区二区黑人巨大| 大伊香蕉一区二区三区| 亚洲综合激情另类专区老铁性| 扒开腿狂躁女人爽出白浆av | 亚洲视频一区二区久久久| 激情三级在线观看视频| 美女激情免费在线观看| 国产对白老熟女正在播放| 日本精品中文字幕人妻| 国产成人av在线免播放观看av| 欧美国产日本高清在线| 久久精品a毛片看国产成人| 欧美人妻免费一区二区三区|