電商平臺林產(chǎn)品個性化推薦算法研究
本文選題:林產(chǎn)品推薦 + 協(xié)同過濾; 參考:《東北林業(yè)大學(xué)》2016年碩士論文
【摘要】:林產(chǎn)品以其具有的天然、環(huán)保、綠色的優(yōu)勢,成為了健康產(chǎn)品的主流選擇之一。電子商務(wù)平臺的不斷發(fā)展帶動了林業(yè)產(chǎn)品推廣和銷售。但是隨著用戶和產(chǎn)品規(guī)模的不斷增多,出現(xiàn)了嚴(yán)重的“信息負(fù)載”問題,因此個性化推薦服務(wù)應(yīng)運(yùn)而生。個性化推薦服務(wù)能夠快速主動挖掘潛在的購買用戶,幫助用戶快速找到可能感興趣或喜歡的商品,不但可以增加網(wǎng)絡(luò)流量、提升營業(yè)收入,同時還能夠加強(qiáng)用戶對于網(wǎng)站的忠誠度以及用戶體驗(yàn)。電子商務(wù)平臺對于產(chǎn)品的推薦大多是基于協(xié)同過濾推薦算法,該算法是迄今為止應(yīng)用最成功的個性化推薦算法,被廣泛的應(yīng)用到很多領(lǐng)域中。但是隨著互聯(lián)網(wǎng)的快速普及,使得電商平臺用戶、產(chǎn)品規(guī)模的不斷擴(kuò)大,協(xié)同過濾算法遇到嚴(yán)重的數(shù)據(jù)稀疏性問題,導(dǎo)致推薦的精度和可擴(kuò)展性都在急劇下降。文中對協(xié)同過濾算法進(jìn)行深入學(xué)習(xí)和研究過后,提出了一種基于Weighted SlopeOne(簡稱WSO)的K-means個性化林產(chǎn)品推薦算法,該算法首先將WSO算法進(jìn)行產(chǎn)品打分的思想應(yīng)用于高維稀疏用戶-產(chǎn)品評分矩陣的填充上,然后使用改進(jìn)的K-means算法對用戶進(jìn)行聚類生成用戶類簇,最后在每個類簇內(nèi)為目標(biāo)用戶實(shí)現(xiàn)推薦服務(wù)。文中以MovieLens數(shù)據(jù)集為數(shù)據(jù)源進(jìn)行對比試驗(yàn),經(jīng)仿真表明,文中的算法能夠有效地提升推薦的精度和可擴(kuò)展性。以Apache Mahout為實(shí)驗(yàn)平臺,將文中提出的基于WSO的K-means個性化林產(chǎn)品推薦算法應(yīng)用于京東商城的林產(chǎn)品購買評分中,實(shí)驗(yàn)結(jié)果表明,文中提出算法的precision、recall、MAE指標(biāo)反應(yīng)良好,適宜將文中提出的算法在林產(chǎn)品貿(mào)易銷售平臺進(jìn)行大范圍推廣,以提升林產(chǎn)品銷量和用戶忠誠度。
[Abstract]:Forest products with its natural, environmental protection, green advantages, has become one of the mainstream choice of health products.The continuous development of e-commerce platform has led to the promotion and sale of forestry products.However, with the increasing of users and products, there is a serious problem of "information load", so personalized recommendation service emerges as the times require.Personalized recommendation services can quickly and actively mine potential buyers, help users quickly find products that may be of interest or interest, and not only increase network traffic, but also increase revenue.At the same time can also enhance the user's loyalty to the site and user experience.The product recommendation of e-commerce platform is mostly based on collaborative filtering recommendation algorithm, which is the most successful personalized recommendation algorithm so far, and has been widely used in many fields.However, with the rapid popularization of the Internet, the users of e-commerce platform and the product scale are expanding, the collaborative filtering algorithm meets with serious data sparsity problem, resulting in a sharp decline in the accuracy and scalability of recommendations.After in-depth study and research on collaborative filtering algorithm, a K-means personalized forest product recommendation algorithm based on Weighted Slope one (short for WSO) is proposed.This algorithm first applies the idea of WSO algorithm to the filling of high-dimensional sparse user-product scoring matrix, and then uses the improved K-means algorithm to cluster users to generate user clusters.Finally, the recommendation service is implemented for the target users in each cluster.In this paper, the MovieLens data set is used as the data source. The simulation results show that the proposed algorithm can effectively improve the accuracy and scalability of the recommendation.On the basis of Apache Mahout, the K-means personalized forest product recommendation algorithm based on WSO is applied to the forest product purchase score of JingDong Mall. The experimental results show that the proposed algorithm has a good response to the index of precisioning all forest products.It is suitable to popularize the proposed algorithm in forest products trading and marketing platform in order to promote forest product sales and customer loyalty.
【學(xué)位授予單位】:東北林業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個性化推薦算法研究[J];電腦知識與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識下的多重態(tài)度個性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
相關(guān)會議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個性化推薦算法[A];第二十四屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會論文集[C];2008年
3 秦國;杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動商務(wù)個性化推薦系統(tǒng)[A];社會經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會第17屆學(xué)術(shù)年會論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時推薦算法[A];第五屆全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號:1745931
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/1745931.html