天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于DBN分類的協(xié)同過濾推薦算法研究

發(fā)布時(shí)間:2018-01-27 03:50

  本文關(guān)鍵詞: 推薦系統(tǒng) 多屬性 生命周期 DBN 覆蓋率 出處:《新疆大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著數(shù)字信息化時(shí)代的到來(lái),類似于淘寶、京東、亞馬遜等各大網(wǎng)絡(luò)電商的數(shù)量與日俱增,電子商務(wù)個(gè)性化推薦系統(tǒng)亦成為了研究和應(yīng)用的熱門領(lǐng)域。統(tǒng)計(jì)大量研究結(jié)果顯示,目前現(xiàn)有研究方法都是從用戶角度出發(fā)進(jìn)行預(yù)測(cè)和推薦。與傳統(tǒng)的視屏或電影推薦不同,電子商務(wù)個(gè)性化推薦系統(tǒng)不僅要注重用戶體驗(yàn),同時(shí)也要注重商家盈利狀態(tài),因此對(duì)于新項(xiàng)目的推薦、項(xiàng)目推薦的覆蓋率及多樣性成為商家關(guān)注的焦點(diǎn)。如何在現(xiàn)有方法的基礎(chǔ)上從商家角度出發(fā)研究出高質(zhì)量、高性能的推薦技術(shù)就顯得尤其重要。首先,本文提出了基于用戶多屬性的協(xié)同過濾推薦算法(UMACF),該方法從用戶的評(píng)分、評(píng)論、等級(jí)及區(qū)域多因素計(jì)算預(yù)測(cè)評(píng)分值,將預(yù)測(cè)結(jié)果和基于用戶的協(xié)同過濾推薦算法結(jié)合后進(jìn)行推薦。實(shí)驗(yàn)結(jié)果表明:(1)在用戶的評(píng)分、評(píng)論、等級(jí)及區(qū)域4因素中,評(píng)分和評(píng)論是最影響預(yù)測(cè)評(píng)分值的因素;(2)與傳統(tǒng)的協(xié)同過濾推薦算法相比,UMACF推薦算法的預(yù)測(cè)評(píng)分準(zhǔn)確度提高近10%;與UARCF推薦算法相比,UMACF推薦算法的預(yù)測(cè)評(píng)分準(zhǔn)確度提高近5%。其次,本文提出了基于用戶多屬性和項(xiàng)目生命周期的推薦算法(UAIL),該方法根據(jù)評(píng)分、評(píng)論、等級(jí)、區(qū)域、用戶評(píng)論時(shí)間和項(xiàng)目發(fā)布時(shí)間信息使用銷售量增長(zhǎng)率分析法和商家盈利方式構(gòu)建了基于項(xiàng)目生命周期的推薦模型,將該推薦模型和UMACF推薦算法的預(yù)測(cè)評(píng)分值相結(jié)合后進(jìn)行推薦。實(shí)驗(yàn)結(jié)果表明:與UARCF推薦算法相比,覆蓋率提高近28%,推薦新項(xiàng)目的新穎度提高近40%。最后,本文提出了基于DBN分類的協(xié)同過濾推薦算法研究(DBNCF),該方法使用DBN網(wǎng)絡(luò)進(jìn)行學(xué)習(xí)分類,將分類的結(jié)果和UAIL推薦算法的項(xiàng)目生命周期模型結(jié)合形成基于DBN分類的項(xiàng)目生命周期推薦模型,將該模型和UMACF推薦算法的預(yù)測(cè)評(píng)分值相結(jié)合后進(jìn)行推薦。實(shí)驗(yàn)結(jié)果表明:(1)與UAIL推薦算法相比,DBNCF推薦算法的覆蓋率提高5%,推薦新項(xiàng)目的新穎度提高近10%。(2)在時(shí)間耗能方面,UserCF、UARCF、UMACF和UAIL推薦算法時(shí)間消耗較為相近;與這四種推薦算法相比,DBNCF推薦算法需花費(fèi)大量時(shí)間學(xué)習(xí),因此該算法的時(shí)間消耗呈指數(shù)型增長(zhǎng)。
[Abstract]:With the arrival of the digital information age, similar to Taobao, JingDong, Amazon and other major network e-commerce number is increasing day by day. E-commerce personalized recommendation system has also become a hot area of research and application. At present, the existing research methods are from the perspective of users to predict and recommend. Unlike traditional video or film recommendation, e-commerce personalized recommendation system should not only focus on user experience. At the same time, we should also pay attention to the status of business profitability, so for the new project recommendation. The coverage and diversity of project recommendations have become the focus of attention. How to develop high quality and high performance recommendation technology based on existing methods is particularly important. First of all. In this paper, we propose a collaborative filtering recommendation algorithm based on user multi-attribute, which calculates the prediction score from user rating, comment, rank and region multi-factor. The prediction results are combined with the user-based collaborative filtering recommendation algorithm. The experimental results show that: 1) in the user's rating, comment, rating and area of four factors. Scores and comments were the most important factors affecting the predicted scores. Compared with the traditional collaborative filtering recommendation algorithm, the prediction accuracy of UMACF recommendation algorithm is improved by nearly 10%. Compared with the UARCF recommendation algorithm, the prediction accuracy of UMACF recommendation algorithm is improved by nearly 5. Secondly, this paper proposes a recommendation algorithm based on user multi-attribute and project life cycle. According to the rating, comment, rating, region, user comment time and project release time information, the method constructs a recommendation model based on project life cycle using the sales growth rate analysis method and the business profit method. The proposed recommendation model is combined with the prediction score of the UMACF recommendation algorithm. The experimental results show that compared with the UARCF recommendation algorithm, the coverage rate is increased by nearly 28%. Finally, this paper proposes a collaborative filtering recommendation algorithm based on DBN classification, which uses DBN network for learning classification. Combining the result of classification with the project life cycle model of UAIL recommendation algorithm, the project life cycle recommendation model based on DBN classification is formed. The model is combined with the prediction score of the UMACF recommendation algorithm. The experimental results show that the coverage of the UMACF recommendation algorithm is 5% higher than that of the UAIL recommendation algorithm. The time consumption of user CFS UARCF UMACF and UAIL recommendation algorithm is similar to that of UAIL recommendation algorithm. Compared with these four recommendation algorithms, it takes a lot of time to learn, so the time consumption of the proposed algorithm increases exponentially.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 莫岱青;;《2016年(上)中國(guó)電子商務(wù)市場(chǎng)數(shù)據(jù)監(jiān)測(cè)報(bào)告》發(fā)布[J];計(jì)算機(jī)與網(wǎng)絡(luò);2016年18期

2 于洪;李俊華;;一種解決新項(xiàng)目冷啟動(dòng)問題的推薦算法[J];軟件學(xué)報(bào);2015年06期

3 丁少衡;姬東鴻;王路路;;基于用戶屬性和評(píng)分的協(xié)同過濾推薦算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年02期

4 冷亞軍;陸青;梁昌勇;;協(xié)同過濾推薦技術(shù)綜述[J];模式識(shí)別與人工智能;2014年08期

5 李鵬飛;吳為民;;基于混合模型推薦算法的優(yōu)化[J];計(jì)算機(jī)科學(xué);2014年02期

6 秦勝君;盧志平;;稀疏自動(dòng)編碼器在文本分類中的應(yīng)用研究[J];科學(xué)技術(shù)與工程;2013年31期

7 張開旭;周昌樂;;基于自動(dòng)編碼器的中文詞匯特征無(wú)監(jiān)督學(xué)習(xí)[J];中文信息學(xué)報(bào);2013年05期

8 趙志宏;楊紹普;馬增強(qiáng);;基于卷積神經(jīng)網(wǎng)絡(luò)LeNet-5的車牌字符識(shí)別研究[J];系統(tǒng)仿真學(xué)報(bào);2010年03期

9 鄧愛林,朱揚(yáng)勇,施伯樂;基于項(xiàng)目評(píng)分預(yù)測(cè)的協(xié)同過濾推薦算法[J];軟件學(xué)報(bào);2003年09期

10 曾春,邢春曉,周立柱;基于內(nèi)容過濾的個(gè)性化搜索算法[J];軟件學(xué)報(bào);2003年05期

相關(guān)碩士學(xué)位論文 前2條

1 仵,

本文編號(hào):1467485


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/1467485.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e480d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美一区二区不卡专区| 大香蕉久草网一区二区三区| 亚洲熟妇中文字幕五十路| 国产av大片一区二区三区| 国产又大又硬又粗又湿| 在线中文字幕亚洲欧美一区| 一级片二级片欧美日韩| 日韩色婷婷综合在线观看| 99国产精品国产精品九九| 日本人妻精品中文字幕不卡乱码| 国产成人av在线免播放观看av| 亚洲精品一区三区三区| 激情视频在线视频在线视频| 少妇一区二区三区精品| 欧美自拍系列精品在线| 国产精品一区二区传媒蜜臀| 国产欧美日韩不卡在线视频| 亚洲男人的天堂就去爱| 亚洲综合激情另类专区老铁性| 亚洲av成人一区二区三区在线| 日韩一区二区三区18| 日本av在线不卡一区| 日本精品视频一二三区| 一级片黄色一区二区三区| 欧美精品女同一区二区| 精品日韩av一区二区三区| 99国产一区在线播放| 久久亚洲国产视频三级黄| 欧美一级黄片免费视频| 午夜亚洲精品理论片在线观看 | 国产日产欧美精品大秀| 久久亚洲精品成人国产| 欧美性欧美一区二区三区| 黄色av尤物白丝在线播放网址| 国产欧美日韩精品自拍| 欧美日韩亚洲国产精品| 老富婆找帅哥按摩抠逼视频| 国产一级内射麻豆91| 97精品人妻一区二区三区麻豆| 麻豆视传媒短视频在线看| 免费特黄欧美亚洲黄片|