基于DBN分類的協(xié)同過濾推薦算法研究
本文關鍵詞: 推薦系統(tǒng) 多屬性 生命周期 DBN 覆蓋率 出處:《新疆大學》2017年碩士論文 論文類型:學位論文
【摘要】:隨著數(shù)字信息化時代的到來,類似于淘寶、京東、亞馬遜等各大網絡電商的數(shù)量與日俱增,電子商務個性化推薦系統(tǒng)亦成為了研究和應用的熱門領域。統(tǒng)計大量研究結果顯示,目前現(xiàn)有研究方法都是從用戶角度出發(fā)進行預測和推薦。與傳統(tǒng)的視屏或電影推薦不同,電子商務個性化推薦系統(tǒng)不僅要注重用戶體驗,同時也要注重商家盈利狀態(tài),因此對于新項目的推薦、項目推薦的覆蓋率及多樣性成為商家關注的焦點。如何在現(xiàn)有方法的基礎上從商家角度出發(fā)研究出高質量、高性能的推薦技術就顯得尤其重要。首先,本文提出了基于用戶多屬性的協(xié)同過濾推薦算法(UMACF),該方法從用戶的評分、評論、等級及區(qū)域多因素計算預測評分值,將預測結果和基于用戶的協(xié)同過濾推薦算法結合后進行推薦。實驗結果表明:(1)在用戶的評分、評論、等級及區(qū)域4因素中,評分和評論是最影響預測評分值的因素;(2)與傳統(tǒng)的協(xié)同過濾推薦算法相比,UMACF推薦算法的預測評分準確度提高近10%;與UARCF推薦算法相比,UMACF推薦算法的預測評分準確度提高近5%。其次,本文提出了基于用戶多屬性和項目生命周期的推薦算法(UAIL),該方法根據評分、評論、等級、區(qū)域、用戶評論時間和項目發(fā)布時間信息使用銷售量增長率分析法和商家盈利方式構建了基于項目生命周期的推薦模型,將該推薦模型和UMACF推薦算法的預測評分值相結合后進行推薦。實驗結果表明:與UARCF推薦算法相比,覆蓋率提高近28%,推薦新項目的新穎度提高近40%。最后,本文提出了基于DBN分類的協(xié)同過濾推薦算法研究(DBNCF),該方法使用DBN網絡進行學習分類,將分類的結果和UAIL推薦算法的項目生命周期模型結合形成基于DBN分類的項目生命周期推薦模型,將該模型和UMACF推薦算法的預測評分值相結合后進行推薦。實驗結果表明:(1)與UAIL推薦算法相比,DBNCF推薦算法的覆蓋率提高5%,推薦新項目的新穎度提高近10%。(2)在時間耗能方面,UserCF、UARCF、UMACF和UAIL推薦算法時間消耗較為相近;與這四種推薦算法相比,DBNCF推薦算法需花費大量時間學習,因此該算法的時間消耗呈指數(shù)型增長。
[Abstract]:With the arrival of the digital information age, similar to Taobao, JingDong, Amazon and other major network e-commerce number is increasing day by day. E-commerce personalized recommendation system has also become a hot area of research and application. At present, the existing research methods are from the perspective of users to predict and recommend. Unlike traditional video or film recommendation, e-commerce personalized recommendation system should not only focus on user experience. At the same time, we should also pay attention to the status of business profitability, so for the new project recommendation. The coverage and diversity of project recommendations have become the focus of attention. How to develop high quality and high performance recommendation technology based on existing methods is particularly important. First of all. In this paper, we propose a collaborative filtering recommendation algorithm based on user multi-attribute, which calculates the prediction score from user rating, comment, rank and region multi-factor. The prediction results are combined with the user-based collaborative filtering recommendation algorithm. The experimental results show that: 1) in the user's rating, comment, rating and area of four factors. Scores and comments were the most important factors affecting the predicted scores. Compared with the traditional collaborative filtering recommendation algorithm, the prediction accuracy of UMACF recommendation algorithm is improved by nearly 10%. Compared with the UARCF recommendation algorithm, the prediction accuracy of UMACF recommendation algorithm is improved by nearly 5. Secondly, this paper proposes a recommendation algorithm based on user multi-attribute and project life cycle. According to the rating, comment, rating, region, user comment time and project release time information, the method constructs a recommendation model based on project life cycle using the sales growth rate analysis method and the business profit method. The proposed recommendation model is combined with the prediction score of the UMACF recommendation algorithm. The experimental results show that compared with the UARCF recommendation algorithm, the coverage rate is increased by nearly 28%. Finally, this paper proposes a collaborative filtering recommendation algorithm based on DBN classification, which uses DBN network for learning classification. Combining the result of classification with the project life cycle model of UAIL recommendation algorithm, the project life cycle recommendation model based on DBN classification is formed. The model is combined with the prediction score of the UMACF recommendation algorithm. The experimental results show that the coverage of the UMACF recommendation algorithm is 5% higher than that of the UAIL recommendation algorithm. The time consumption of user CFS UARCF UMACF and UAIL recommendation algorithm is similar to that of UAIL recommendation algorithm. Compared with these four recommendation algorithms, it takes a lot of time to learn, so the time consumption of the proposed algorithm increases exponentially.
【學位授予單位】:新疆大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.3
【參考文獻】
相關期刊論文 前10條
1 莫岱青;;《2016年(上)中國電子商務市場數(shù)據監(jiān)測報告》發(fā)布[J];計算機與網絡;2016年18期
2 于洪;李俊華;;一種解決新項目冷啟動問題的推薦算法[J];軟件學報;2015年06期
3 丁少衡;姬東鴻;王路路;;基于用戶屬性和評分的協(xié)同過濾推薦算法[J];計算機工程與設計;2015年02期
4 冷亞軍;陸青;梁昌勇;;協(xié)同過濾推薦技術綜述[J];模式識別與人工智能;2014年08期
5 李鵬飛;吳為民;;基于混合模型推薦算法的優(yōu)化[J];計算機科學;2014年02期
6 秦勝君;盧志平;;稀疏自動編碼器在文本分類中的應用研究[J];科學技術與工程;2013年31期
7 張開旭;周昌樂;;基于自動編碼器的中文詞匯特征無監(jiān)督學習[J];中文信息學報;2013年05期
8 趙志宏;楊紹普;馬增強;;基于卷積神經網絡LeNet-5的車牌字符識別研究[J];系統(tǒng)仿真學報;2010年03期
9 鄧愛林,朱揚勇,施伯樂;基于項目評分預測的協(xié)同過濾推薦算法[J];軟件學報;2003年09期
10 曾春,邢春曉,周立柱;基于內容過濾的個性化搜索算法[J];軟件學報;2003年05期
相關碩士學位論文 前2條
1 仵,
本文編號:1467485
本文鏈接:http://sikaile.net/jingjilunwen/dianzishangwulunwen/1467485.html