商車費(fèi)改背景下汽車保險(xiǎn)獎(jiǎng)懲系統(tǒng)實(shí)證研究
[Abstract]:The reward and punishment system plays an active role in optimizing the traffic environment, improving the traffic order and regulating the driving behavior of the vehicle owner and forming a good driving habit. The data show that the total income of vehicle insurance in our country accounts for more than 50% of the total income of property insurance premium in the current year, and more than 70%. With the high-speed growth of vehicle tenure, the number of traffic accidents in our country and the total loss of property have been high. The establishment of reasonable reward and punishment system from the angle of vehicle insurance is also the necessary economic means to improve the traffic order in our country. At the same time, the reward and punishment system also has an important influence on the premium income and the payment payment of the automobile insurance to a certain extent. In recent years, China's traffic regulations have made important revisions to the rules on the punishment of traffic offences, and at the same time, the CIRC has reformed the management system of the vehicle insurance and the rate. The rate of car insurance starts to go to the stage of deepening reform. As one of the important property insurance products, the basis of the determination of the rate is to determine the final premium and the reward and punishment system to determine the adjustment coefficient of the reward and punishment system according to the risk record of the insured in the previous year. The premium is adjusted on the basis of the calculation of the basic premium. In this paper, based on the insurance data of the insurance company in recent years, using the Bayesian method to select the negative binomial model as the probability model of the reward and punishment system, the empirical analysis is carried out, and the premium calculation model considering the number of claims is established, and the optimal BMS is finally obtained. Furthermore, the Markov property of the reward and punishment system and the process of steady state, the situation of stable premium and the steady state premium are analyzed. When we get a steady-state premium, that's the case in which the insurance company's future income premium can be determined to some extent, and if we can know what the insurance company might pay for the future, There is a general pre-sentence and preparation for the financial stability of the insurance company. We use two logistic regression thinking, as well as the insured data of the insurance company, to select seven factors such as the driving age, age, sex and annual driving mileage of the insured, to establish the risk prediction model, and to forecast the risk of the insured by the model. And provides a method and a method for predicting the insurance premium for an insurance company. In June,2016, the reform of the vehicle insurance has spread all over the country. This paper establishes a corresponding Markov transition matrix for the system of reward and punishment, which is introduced before and after the reform of the country, and selects RSAL coefficient, coefficient of variation, ECL coefficient and so on to evaluate the system comprehensively. The reward and punishment system after the change is more severe, the BMS level is expanded, and the reward and punishment force is enhanced. In terms of the coefficient of variation, the new BMS is much more severe than the BMS, but the new BMS has a high level of invisibility for the newly-entered policy-holder. Finally, some suggestions are put forward to the reform of the car insurance rate and the improvement of the vehicle insurance and punishment system, so as to promote the healthy development of the automobile insurance market. The reform of the automobile insurance has been carried out to all parts of the country, but the explanation of the reform still needs to be paid attention to, the automobile insurance reform makes the risk classification increase, the insurance premium of the high-quality driver is reduced, the number of the drivers with more risk is increased, The hidden penalty for newly-entering drivers is also relatively improved, which is to better encourage the driver to develop good driving habits, to reduce risk accidents, rather than to exit the risk market for drivers with more risk of risk, resulting in greater hidden dangers. In addition, considering the model of the amount of compensation, better utilization of the driver's information, the refinement of the risk classification is still the future development direction, and the future research direction of this paper.
【學(xué)位授予單位】:浙江財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F842.634
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳賽勛;;買(mǎi)汽車保險(xiǎn)怎么才合算[J];金融經(jīng)濟(jì);2006年03期
2 王偉;杜傳進(jìn);;我國(guó)汽車保險(xiǎn)產(chǎn)品創(chuàng)新研究[J];湖北經(jīng)濟(jì)學(xué)院學(xué)報(bào)(人文社會(huì)科學(xué)版);2006年01期
3 周喚雄;;淺談我國(guó)汽車保險(xiǎn)發(fā)展歷程與現(xiàn)狀[J];黑龍江科技信息;2011年32期
4 陳立輝;;案例教學(xué)法在汽車保險(xiǎn)與理賠課程教學(xué)中的應(yīng)用探討[J];中國(guó)教育技術(shù)裝備;2011年12期
5 宋曉青;;關(guān)于高!镀嚤kU(xiǎn)與理賠》課程教學(xué)模式的探討[J];經(jīng)濟(jì)視角(中旬);2011年12期
6 龐紅剛;;以汽車保險(xiǎn)為例對(duì)我國(guó)保險(xiǎn)詐騙問(wèn)題的綜合研究[J];時(shí)代金融;2012年33期
7 蘭波;必須建立汽車保險(xiǎn)機(jī)制[J];道路交通管理;1999年05期
8 李傳博;;汽車保險(xiǎn)在中小城市的應(yīng)用與發(fā)展研究[J];現(xiàn)代經(jīng)濟(jì)信息;2013年23期
9 曉方;美國(guó)汽車保險(xiǎn)一覽[J];湖南現(xiàn)代道路交通;2001年05期
10 列仁;網(wǎng)上汽車保險(xiǎn)速度取勝[J];廣東電腦與電訊;2000年07期
相關(guān)會(huì)議論文 前6條
1 白玉培;;淺析制約汽車保險(xiǎn)服務(wù)質(zhì)量的因素[A];“2011西部汽車產(chǎn)業(yè)·學(xué)術(shù)論壇”暨四川省汽車工程學(xué)會(huì)四屆第九次學(xué)術(shù)年會(huì)論文集[C];2011年
2 白玉培;;淺析集中作業(yè)模式對(duì)汽車保險(xiǎn)市場(chǎng)的影響[A];四川省第九屆(2009年)汽車學(xué)術(shù)交流年會(huì)論文集[C];2009年
3 任洪娟;楊亞莉;;《汽車保險(xiǎn)與理賠》考試改革探討[A];第5屆教育教學(xué)改革與管理工程學(xué)術(shù)年會(huì)論文集[C];2012年
4 任洪娟;楊亞莉;;基于卓越工程師培養(yǎng)《汽車保險(xiǎn)與理賠》的教學(xué)思考[A];第5屆教育教學(xué)改革與管理工程學(xué)術(shù)年會(huì)論文集[C];2012年
5 謝躍;;天平模式:內(nèi)外效應(yīng)的協(xié)同[A];北京保險(xiǎn)學(xué)會(huì)2006專題評(píng)選——“專業(yè)保險(xiǎn)經(jīng)代,,小荷已露尖尖角”[C];2006年
6 陳迪紅;楊湘豫;;汽車保險(xiǎn)獎(jiǎng)懲系統(tǒng)最優(yōu)自留額模型及計(jì)算方法[A];中國(guó)運(yùn)籌學(xué)會(huì)第六屆學(xué)術(shù)交流會(huì)論文集(下卷)[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 王薇;電動(dòng)汽車保險(xiǎn)產(chǎn)品引關(guān)注[N];中國(guó)質(zhì)量報(bào);2013年
2 段昆;美國(guó)度車訂制的汽車保險(xiǎn)[N];中國(guó)保險(xiǎn)報(bào);2001年
3 鄺蕾;2003年美國(guó)汽車保險(xiǎn)更貴服務(wù)更周到[N];中國(guó)汽車報(bào);2003年
4 本報(bào)記者 仝春建;汽車保險(xiǎn)需要產(chǎn)業(yè)鏈效應(yīng)[N];中國(guó)保險(xiǎn)報(bào);2006年
5 ;發(fā)展汽車保險(xiǎn) 構(gòu)建和諧社會(huì)[N];中國(guó)保險(xiǎn)報(bào);2006年
6 金勇德;韓國(guó)網(wǎng)絡(luò)汽車保險(xiǎn)份額達(dá)15%[N];中國(guó)保險(xiǎn)報(bào);2007年
7 本報(bào)記者 崔帆;汽車保險(xiǎn)產(chǎn)業(yè)鏈盈利探秘[N];財(cái)經(jīng)時(shí)報(bào);2006年
8 崔帆;汽車保險(xiǎn)產(chǎn)業(yè)鏈盈利探秘[N];中國(guó)城鄉(xiāng)金融報(bào);2006年
9 本版編輯 郭左踐 王建 王憲章 周道許 王和 謝躍 ;汽車保險(xiǎn)產(chǎn)業(yè)鏈浮現(xiàn) 如何共贏引各方關(guān)注[N];金融時(shí)報(bào);2006年
10 記者 張?zhí)m;專家學(xué)者:理性看待汽車保險(xiǎn)產(chǎn)業(yè)鏈發(fā)展態(tài)勢(shì)[N];金融時(shí)報(bào);2006年
相關(guān)博士學(xué)位論文 前2條
1 王奕渲;汽車保險(xiǎn)最優(yōu)獎(jiǎng)懲系統(tǒng)研究[D];湖南大學(xué);2006年
2 曾國(guó)忠;臺(tái)灣汽車保險(xiǎn)經(jīng)營(yíng)問(wèn)題之研究[D];中南大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 劉志翔;基于BP神經(jīng)網(wǎng)絡(luò)的汽車保險(xiǎn)需求預(yù)測(cè)研究[D];暨南大學(xué);2015年
2 楊謙;基于業(yè)務(wù)規(guī)則的汽車保險(xiǎn)獎(jiǎng)懲系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
3 王崇;汽車保險(xiǎn)管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
4 田紅梅;新車共保中心的抗衡勢(shì)力研究[D];天津財(cái)經(jīng)大學(xué);2015年
5 王博;移動(dòng)互聯(lián)網(wǎng)汽車保險(xiǎn)服務(wù)設(shè)計(jì)與研究[D];長(zhǎng)春工業(yè)大學(xué);2016年
6 鄧鐘理;汽車保險(xiǎn)風(fēng)險(xiǎn)債券產(chǎn)品設(shè)計(jì)[D];湖南大學(xué);2016年
7 王琰;商車費(fèi)改背景下汽車保險(xiǎn)獎(jiǎng)懲系統(tǒng)實(shí)證研究[D];浙江財(cái)經(jīng)大學(xué);2017年
8 陳軼;汽車保險(xiǎn)業(yè)務(wù)經(jīng)營(yíng)困境及其對(duì)策研究[D];西南財(cái)經(jīng)大學(xué);2010年
9 張磊;中國(guó)汽車保險(xiǎn)網(wǎng)上營(yíng)銷發(fā)展對(duì)策的研究[D];天津財(cái)經(jīng)學(xué)院;2001年
10 周莎麗;中國(guó)汽車保險(xiǎn)市場(chǎng)研究[D];武漢理工大學(xué);2007年
本文編號(hào):2502573
本文鏈接:http://sikaile.net/jingjilunwen/bxjjlw/2502573.html