保險公司財富優(yōu)化管理問題研究
[Abstract]:Since Cramer used stochastic process to study bankruptcy problem, the optimal wealth management of insurance companies has developed rapidly. Its theory not only enriches financial theory, but also communicates the relationship among finance, insurance and mathematics. For insurance companies, minimizing bankruptcy probability is of great significance to their development, and maximizing corporate wealth is the optimization goal of managers. In this paper, the mathematical models of surplus process from Poisson jump, composite Poisson jump and surplus process are established respectively. The ruin probability of the model is obtained by using martingale method and stochastic control method. The optimal reinsurance problem and the optimal investment-reinsurance problem are studied, and the ruin probability, the equation of survival probability and the optimal investment-reinsurance strategy are obtained. The main contents are as follows: (1) assuming that the earnings process has Poisson jump and the earnings process is the Levy process, the ruin probability of the insurance company is studied. In the case of constant interest rate, random interest rate and the Markov modulation parameter of the earnings process, By using martingale method and stochastic control method, the partial differential equations satisfied by the ruin probability of the insurance company are obtained. (2) it is assumed that the surplus process is Levy process with Poisson jump and earnings process. Aiming at minimizing bankruptcy probability, the reinsurance problem of insurance company is studied. By using martingale method and stochastic control method, the partial differential equations of survival probability are obtained. (3) assuming that the surplus process has Poisson jump and the earnings process has compound Poisson jump, the goal is to maximize the expected utility of the terminal wealth. This paper studies the optimal investment-reinsurance of insurance companies. The optimal investment-reinsurance strategy for maximizing the expected exponential utility is obtained by using stochastic dynamic programming.
【學(xué)位授予單位】:西安工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:F224;F840.31
【參考文獻】
相關(guān)期刊論文 前10條
1 耿金輝;李志民;;保費再投資下雙Cox風(fēng)險模型的破產(chǎn)概率[J];延安大學(xué)學(xué)報(自然科學(xué)版);2014年04期
2 鐘朝艷;;一類常利率復(fù)合Poisson-Geometric風(fēng)險模型的預(yù)警區(qū)問題[J];西南師范大學(xué)學(xué)報(自然科學(xué)版);2014年03期
3 賀芳;榮喜民;;帶有隨機消費的保險基金投資問題[J];工程數(shù)學(xué)學(xué)報;2013年04期
4 劉潔;趙秀蘭;;保險公司的最優(yōu)投資和再保險策略[J];模糊系統(tǒng)與數(shù)學(xué);2013年03期
5 張昕麗;孫文瑜;;最小化損失概率的再保險和投資問題[J];南京師大學(xué)報(自然科學(xué)版);2013年01期
6 韓非;姚素霞;劉利敏;;擴散模型下保險公司的盈余依賴型最優(yōu)投資策略[J];河南師范大學(xué)學(xué)報(自然科學(xué)版);2013年01期
7 耿國強;劉宣會;;Regime-switching下帶VaR限制的最優(yōu)投資消費策略[J];紡織高;A(chǔ)科學(xué)學(xué)報;2012年04期
8 谷愛玲;曾艷珊;;基于均值-方差準(zhǔn)則的保險公司最優(yōu)投資策略[J];數(shù)學(xué)的實踐與認識;2012年22期
9 林祥;楊鵬;;擴散風(fēng)險模型下再保險和投資對紅利的影響[J];經(jīng)濟數(shù)學(xué);2010年01期
10 郭文旌;;保險公司的最優(yōu)投資策略選擇[J];數(shù)理統(tǒng)計與管理;2010年01期
相關(guān)博士學(xué)位論文 前1條
1 史敬濤;帶泊松跳躍的正倒向隨機最優(yōu)控制理論及其應(yīng)用[D];山東大學(xué);2009年
,本文編號:2423617
本文鏈接:http://sikaile.net/jingjilunwen/bxjjlw/2423617.html