不同運動形式下足底受力與肌電特征分析
[Abstract]:Objective: Different sports form, different weight bearing, wearing different shoe movement have different impact on the foot and ankle joint. In this paper, three-dimensional force-measuring platform, telemeter and high-speed camera are used in this paper. The correlation between the anterior tibial muscle and the pertalus and the different shoes. In order to make rational use of the type of movement in the course of life and training, which shoe is more beneficial to the protection of the anterior tibial muscle and the posterior segment of the tibia. Methods: Six students of physical education in Xi 'an Institute of Physical Education were selected, and then 5 Km/ h, 7 Km/ h, 5 Km/ h span and 5 Km/ h steps were carried out in turn. The second was 5Kg, 10Kg, 15Kg and 20Kg, respectively. The experiment tests were carried out in four kinds of motion forms including stride and upper and lower steps. At last, the experiment tests were carried out in four kinds of athletic forms, such as running shoes, climbing shoes, loading 5Kg, 10Kg, 15Kg, 20Kg, running, stride, and up and down steps. The surface reaction force is measured by a three-dimensional force measuring platform, and the electric parameters of the anterior muscle and the lateral wall of the tibia are measured by the telemeter electrometer, and the three-dimensional measuring instrument is utilized to synchronize the three three. Result: 1. Foot contact time: In the case of bare feet, go 0. 8s, run 0. 5s, stride 0. 5s, upper and lower steps 0. 68s; in the case of wearing sports shoes, go 0. 85s, run 0. 55s, stride 0. 53s, upper and lower steps 0. 77s; in case of climbing shoes, go 0. 93s, run 0. 61s, stride 0. 6s, up and down steps 0. 89s. 2. Peak reaction force on foot ground: In case of bare feet, go 1217N, run 1504N, stride 2150N, upper and lower steps 1595N; in case of running shoes, go 1252N, run 1595N, step 1769N, up and down steps 1514N. In the case of climbing shoes, walk 12345N, run 1584N, step 1878N, up and down steps 1516N.3. Under different gait, with the increase of weight, the peak-to-ground reaction force, IEMG and RMS also increased. The normalized values of IEMG in the anterior tibial muscle were: bare feet, 4. 2%, 4. 15%, stride 6. 3%, up and down steps 6. 3%; in the case of sports shoes, 4. 85%, 4. 65%, stride 4. 53%, up and down steps 3. 6%; in the case of climbing shoes, 4. 3%, 3. 98%, stride 4. 48%, Up and down steps 3.47%. in that case of bare foot, 4. 7%, 6. 1%, stride 7. 2%, up and down step 5. 3%; in the case of sports shoes, 9. 8%, 6%, 6. 1%, up and down step 8%; in the case of climbing shoes, walk 6. 2%, run 5. 1%, stride 5. 1%, Up and down steps 6.5%. 5. The RMS normalized values of the anterior tibial muscle were 7. 25%, 6. 33%, 7. 53%, 5.37%, respectively. In the case of climbing shoes, 6. 3%, 5. 9%, stride 6%, and upper and lower steps 5.17% were taken. The RMS normalized values were: 4%, 2. 9%, stride 2.93%, upper and lower steps 5. 6%, climbing shoes, 8%, 8. 05%, stride 8%, up and down steps 1.2%. Conclusion: 1. Walk, run, stride, up and down steps four kinds of motion form (similar speed), wear the same pair of shoes (bare feet, sports shoes, mountaineering shoes) foot contact time size relationship is: go to the lower step to run stride. 2. Walk, run, stride, upper and lower steps four gait (similar speed), wear the same pair of shoes (bare feet, sports shoes, mountaineering shoes) under the condition that the foot ground peak reaction force magnitude relation is: stride the upper and lower steps; and go, run up and down steps, Cross-step foot ground peak counterforce is about 1.5 times the body weight, about 2 times, about 2 times, about 3 times. The peak-to-ground reaction force on the foot of the foot increased, and the normalized values of the anterior and inferior tibial muscles of the tibia showed an irregular increase or decrease. In other words, the relationship between the peak pressure of the sole and the normalized value of IEMG in the anterior tibial muscle and the tibial muscle was irregular. In the case of wearing shoes (sports shoes, hiking shoes), walking, running, stride, up and down steps (similar in speed), wearing hiking shoes is more conducive to protecting the anterior muscle of the tibia than wearing sports shoes, while the sport of wearing sports shoes is more beneficial to protecting the tibia than wearing the mountaineering shoes.
【學位授予單位】:西安體育學院
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:G804.6
【相似文獻】
相關期刊論文 前10條
1 力濤;中國哲學對運動形式的探索歷程[J];內(nèi)蒙古社會科學(文史哲版);1987年06期
2 劉明遠;運動形式是物理教學的主線[J];紡織高;A科學學報;1995年02期
3 朱洪;也談相互轉(zhuǎn)化[J];江淮論壇;1983年04期
4 肖先治;江玉瑞;楊戰(zhàn)民;;關于社會運動形式的定量分析[J];貴州民族學院學報(社會科學版);1987年02期
5 佚名;;物理之美[J];物理教學探討;2009年05期
6 王貴德;思維過程中的言語信息耦合[J];新疆石油教育學院學報;1991年02期
7 張保平,張秦齡,侯維民;泛系轉(zhuǎn)化論及其數(shù)學研究與應用[J];天水師專學報;1993年Z2期
8 劉長林;;論信息的哲學本性[J];中國社會科學;1985年02期
9 趙俊臣;;試論黨的宣傳工作是一門科學[J];云南師范大學學報(哲學社會科學版);1987年06期
10 陳明禮;試論音樂的運動形式──音樂中的排列與組合(之一)[J];鹽城師專學報(哲學社會科學版);1995年02期
相關會議論文 前6條
1 劉常偉;;蹴鞠與“英國古代民間足球”的起源與演變研究[A];第八屆全國體育科學大會論文摘要匯編(二)[C];2007年
2 裴秀改;;幾種特殊的運動形式談[A];中華教育理論與實踐科研論文成果選編(第2卷)[C];2010年
3 李德營;周勇;鄧賽;謝媛華;;速度倒數(shù)方法在不同運動形式滑坡中的應用[A];2014年全國工程地質(zhì)學術大會論文集[C];2014年
4 張百鳴;;不同運動形式12分鐘跑運動系統(tǒng)的激活與演化[A];2002年第9屆全國運動醫(yī)學學術會議論文摘要匯編[C];2002年
5 馬榮亮;;新科學的動力出現(xiàn)給科學評論與認可帶來難題[A];中國管理科學文獻[C];2008年
6 馬嶸;寧新輝;;短時多次與持續(xù)長時運動對大學生體質(zhì)健康影響的實驗研究[A];全民健身科學大會論文摘要集[C];2009年
相關重要報紙文章 前3條
1 樹英;女性健身為何有的效果差[N];大眾衛(wèi)生報;2014年
2 北京軍區(qū)總醫(yī)院 教授 張禹;胃的功能及運動形式[N];家庭醫(yī)生報;2003年
3 廖皓磊;何謂倒掛懸垂綜合征[N];中國中醫(yī)藥報;2000年
相關碩士學位論文 前2條
1 程小冬;不同運動形式下足底受力與肌電特征分析[D];西安體育學院;2017年
2 劉程;詩與情感及語言形式[D];云南師范大學;2001年
,本文編號:2293873
本文鏈接:http://sikaile.net/jiaoyulunwen/tylw/2293873.html