商品評(píng)論情感分析系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
[Abstract]:In the past two or three decades, online shopping has profoundly affected the consumer behavior of the vast majority of ordinary consumers in our country. At the same time, for enterprises, when facing the emerging e-commerce market, Should give full play to its production and sales and other links of guidance and decision-making role. There are a lot of commodity review data on e-commerce website, these data have very important guiding significance to marketing strategy. Through the analysis of commodity review text, determine their own product strengths and weaknesses, and competitive products and so on. But there is not a suitable software to meet the needs of the enterprise, so the department of the company proposed to establish a commodity review emotional analysis system to provide technical support for the business department. This paper takes the mobile phone product comment as an example to carry on the thorough research, the goal is to establish a set of complete commodity comment emotion analysis system, applies to analyze the mobile phone product the merit and the shortcoming. I participated in the whole process from analysis to application. First, I completed the processing of the original comment text, including participle and part of speech tagging. Secondly, we try a variety of text classification methods, select the best, determine and implement the classification methods suitable for mobile phone products, and establish a large number of text classification rules database. Then explore different text emotional analysis methods, compare the advantages and disadvantages of these methods, select the most appropriate method and implement, and finally complete the commodity review emotional analysis system. The text classification database and text rule database are established in the process of implementation of the system, and Bayesian emotional classification model is established by training data. After the completion of the commodity review emotional analysis system, according to the feedback of the customer, the testing and modification are carried out continuously. In the process, a large number of experience of text analysis has been accumulated, and the accuracy of the analysis results has been improved step by step. The method is applied to all aspects of product sales. Has provided a complete and comprehensive commodity review analysis report for a number of products, achieving the purpose of commodity review emotional analysis.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 TIAN Pingfang;ZHU Zhonghua;XIONG Li;XU Fangfang;;A Recommendation Mechanism for Web Publishing Based on Sentiment Analysis of Microblog[J];Wuhan University Journal of Natural Sciences;2015年02期
2 武星;呂海濤;卓少劍;;Sentiment Analysis for Chinese Text Based on Emotion Degree Lexicon and Cognitive Theories[J];Journal of Shanghai Jiaotong University(Science);2015年01期
3 劉麗珍;劉昊;王函石;宋巍;趙新蕾;;Generating Domain-Specific Affective Ontology from Chinese Reviews for Sentiment Analysis[J];Journal of Shanghai Jiaotong University(Science);2015年01期
4 楊雨;胡亞娟;林萍;;正則表達(dá)式在英語(yǔ)語(yǔ)調(diào)統(tǒng)計(jì)分析中的應(yīng)用研究[J];平頂山學(xué)院學(xué)報(bào);2013年05期
5 詹毅;;樸素貝葉斯算法和SVM算法在Web文本分類中的效率分析[J];成都大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
6 徐健;;基于網(wǎng)絡(luò)用戶情感分析的預(yù)測(cè)方法研究[J];中國(guó)圖書館學(xué)報(bào);2013年03期
7 沈佳宇;喻擎蒼;;基于Watir框架的Web自動(dòng)化測(cè)試[J];電腦編程技巧與維護(hù);2012年14期
8 李慶艷;金鐸;張文安;張濤;;移動(dòng)電子商務(wù)發(fā)展趨勢(shì)探討[J];電信科學(xué);2011年06期
9 奉國(guó)和;鄭偉;;國(guó)內(nèi)中文自動(dòng)分詞技術(shù)研究綜述[J];圖書情報(bào)工作;2011年02期
10 趙妍妍;秦兵;劉挺;;文本情感分析[J];軟件學(xué)報(bào);2010年08期
相關(guān)博士學(xué)位論文 前4條
1 劉楠;面向微博短文本的情感分析研究[D];武漢大學(xué);2013年
2 施寒瀟;細(xì)粒度情感分析研究[D];蘇州大學(xué);2013年
3 平源;基于支持向量機(jī)的聚類及文本分類研究[D];北京郵電大學(xué);2012年
4 李方濤;基于產(chǎn)品評(píng)論的情感分析研究[D];清華大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 楊彪;基于電子商務(wù)的評(píng)論文本情感極性等級(jí)分析[D];重慶交通大學(xué);2014年
,本文編號(hào):2180373
本文鏈接:http://sikaile.net/guanlilunwen/yingxiaoguanlilunwen/2180373.html