天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 營銷論文 >

大數(shù)據(jù)環(huán)境下精準客戶定位的社交網絡分析

發(fā)布時間:2018-05-30 03:17

  本文選題:社交網絡分析 + 精準營銷 ; 參考:《計算機工程與應用》2017年15期


【摘要】:大數(shù)據(jù)為企業(yè)進行精準營銷提供了重要支撐,精準營銷能提升營銷效果,提高客戶滿意度,精準營銷的前提是客戶識別與選擇。通過分析網絡個體與群體特征,社交網絡分析能夠定位核心價值客戶。首先對社交網絡的中心性進行分析,探討社交網絡節(jié)點地位與營銷效果的關系,運用社群識別方法,對社交網絡進行分群,提出并用Map Reduce實現(xiàn)了針對大規(guī)模社交網絡的社群劃分RMCL方法。在此基礎上,構建了客戶影響度與客戶影響因子等指標,并結合中心度指標,定位社群的核心節(jié)點,并采用分類回歸樹方法,研究了社交網絡結構與客戶消費響應關系,并確定了變量重要性,為企業(yè)采取客戶差異化營銷組合策略提供指導。
[Abstract]:Big data provides the important support for the enterprise to carry on the precision marketing, the precision marketing can enhance the marketing effect, enhances the customer satisfaction, the precision marketing premise is the customer identification and the choice. By analyzing the characteristics of individuals and groups, social network analysis can locate core value customers. Firstly, this paper analyzes the centrality of social network, discusses the relationship between the status of social network node and the effect of marketing, and classifies the social network by using the method of community identification. A community partitioning RMCL method for large scale social networks is proposed and implemented with Map Reduce. On the basis of this, we construct some indexes, such as customer impact degree and customer impact factor, and combine the centrality index to locate the core nodes of the community, and use the classification regression tree method to study the relationship between social network structure and customer consumption response. And determine the importance of variables for enterprises to take customer differentiation marketing mix strategy to provide guidance.
【作者單位】: 長沙理工大學經濟與管理學院;美國北密歇大學數(shù)學與計算機科學系;奇虎360科技有限公司;
【基金】:國家社會科學基金(No.13BGL063)
【分類號】:TP301.6;TP393.09

【參考文獻】

相關期刊論文 前4條

1 王虹旭;吳斌;劉e,

本文編號:1953679


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/yingxiaoguanlilunwen/1953679.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶c3eb3***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com