G公司汽車售后備件需求預(yù)測(cè)
[Abstract]:Absrtact: with the rapid expansion of automobile ownership in recent years, the automobile after-sales service market will take on unprecedented vitality with the rapid development of automobile market. Accurate prediction of spare parts demand is very important to the material management of automobile after-sales service enterprises, which directly determines the inventory level and customer service level of enterprises. The quality of after-sales service will directly affect the brand effect, is one of the important factors affecting its market share. There are many demand forecasting methods at home and abroad, including moving average method, exponential smoothing method, regression analysis method, artificial neural network method and so on. However, due to its own characteristics, the above methods based on time series prediction can not be used to predict the demand of spare parts after sale. Based on the existing prediction methods, the characteristics of after-sales spare parts demand in G Company and the inventory of after-sales spare parts in G Company are investigated and analyzed in this paper, and a dynamic demand forecasting model based on the life cycle of after-sale spare parts is proposed. This paper analyzes the distribution of vehicle spare parts in the period of after-sale maintenance and gets the failure rate of spare parts in different life cycles. Then the number of new vehicle spare parts sold in the forecast period is added to the dynamic demand forecasting model, and then the demand forecast of the after-sale spare parts of G Automobile Company in different time stages is obtained. To improve the accuracy of demand forecast of after-sale spare parts in G Automobile Company, and to provide more scientific data support for the optimization of after-sale spare parts inventory management, thus reducing inventory and logistics costs, and reducing the lag and backlog of inventory. Improve after-sales service quality and overall profit.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F274;F426.471
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮楊;尹迪;羅兵;;基于SES的不常用備件需求預(yù)測(cè)模型[J];兵工自動(dòng)化;2011年02期
2 徐能偉,包凡彪;4S汽車專營(yíng)店零部件庫存理論應(yīng)用分析[J];北京汽車;2005年03期
3 宋國(guó)強(qiáng);陳超;許玲;楊磊;查貴庭;;貝葉斯在地鐵備件庫存預(yù)測(cè)中的應(yīng)用研究[J];裝備制造技術(shù);2008年08期
4 馬秀紅,宋建社,董晟飛;基于回歸分析的備件故障率預(yù)測(cè)模型[J];計(jì)算機(jī)仿真;2003年11期
5 顏衛(wèi)軍,邵晨曦,孫新波;汽配汽修企業(yè)資源管理軟件設(shè)計(jì)[J];計(jì)算機(jī)應(yīng)用與軟件;2003年02期
6 李保華;楊云;;備件需求預(yù)測(cè)模型研究[J];航空維修與工程;2008年05期
7 黃遠(yuǎn)兵;蔡啟明;楊瑋龍;黃燕美;;基于支持向量回歸的服務(wù)備件需求量預(yù)測(cè)研究[J];物流科技;2006年10期
8 趙敏,崔南方;備件的聯(lián)合庫存模式研究[J];中國(guó)設(shè)備工程;2004年06期
9 宋華,王虎;汽車維修及服務(wù)企業(yè)信息化戰(zhàn)略[J];武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版);2004年06期
10 于孝生;ABC分類管理方法在汽車維修業(yè)的應(yīng)用研究[J];物流技術(shù);2005年10期
相關(guān)碩士學(xué)位論文 前2條
1 張洪;現(xiàn)代汽車售后服務(wù)管理體系的研究[D];廣東工業(yè)大學(xué);2005年
2 明謙;H汽車公司供應(yīng)鏈環(huán)境下整車物流管理的研究[D];電子科技大學(xué);2005年
,本文編號(hào):2326411
本文鏈接:http://sikaile.net/guanlilunwen/shengchanguanlilunwen/2326411.html