基于全局信息的動(dòng)態(tài)激勵(lì)評(píng)價(jià)方法及激勵(lì)策略
發(fā)布時(shí)間:2018-06-27 03:43
本文選題:綜合評(píng)價(jià) + 動(dòng)態(tài)評(píng)價(jià); 參考:《系統(tǒng)工程學(xué)報(bào)》2017年02期
【摘要】:針對(duì)動(dòng)態(tài)激勵(lì)評(píng)價(jià)問(wèn)題,提出了一種誘導(dǎo)被評(píng)價(jià)對(duì)象個(gè)體行為向評(píng)價(jià)者全局期望動(dòng)態(tài)趨同的評(píng)價(jià)方法.首先,通過(guò)對(duì)全局被評(píng)價(jià)對(duì)象的觀測(cè)值與變化量進(jìn)行"激勵(lì)型分層"得到具有獎(jiǎng)優(yōu)懲拙思想的"全局激勵(lì)系數(shù)",據(jù)此在動(dòng)態(tài)環(huán)境中集結(jié)出帶有激勵(lì)作用的被評(píng)價(jià)對(duì)象綜合評(píng)價(jià)值與排序.然后,運(yùn)用一個(gè)算例對(duì)該方法的可行性與有效性進(jìn)行了說(shuō)明.此外,通過(guò)對(duì)激勵(lì)策略進(jìn)行仿真,分析不同策略下相對(duì)初始排序的變化程度及不同策略間的變動(dòng)對(duì)排序結(jié)果的影響,從而為評(píng)價(jià)者制定激勵(lì)型分層策略提供理論依據(jù).
[Abstract]:In order to solve the problem of dynamic incentive evaluation, an evaluation method is proposed to induce the individual behavior of the evaluated object to converge to the overall expectation of the evaluator. First Through the "incentive stratification" of the observed value and variation of the global evaluated object, the "global incentive coefficient" with the idea of reward, merit and punishment is obtained, according to which the evaluated object with incentive function is assembled in the dynamic environment. Value and ranking. Then, an example is used to illustrate the feasibility and effectiveness of the method. In addition, through the simulation of incentive strategies, this paper analyzes the degree of relative initial ranking under different strategies and the influence of the changes between different strategies on the ranking results, thus providing a theoretical basis for the evaluators to formulate incentive stratification strategies.
【作者單位】: 東北大學(xué)工商管理學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(71071030;71071031);國(guó)家自然科學(xué)基金面上資助項(xiàng)目(71671031)
【分類號(hào)】:C934
,
本文編號(hào):2072533
本文鏈接:http://sikaile.net/guanlilunwen/lindaojc/2072533.html
最近更新
教材專著