數(shù)據(jù)挖掘在煙草企業(yè)CRM中的應(yīng)用
本文選題:數(shù)據(jù)挖掘 切入點:客戶關(guān)系管理 出處:《華南理工大學(xué)》2013年碩士論文
【摘要】:近幾年,隨著社會對控?zé)煹年P(guān)注度提高,控?zé)熈Χ炔粩嗉哟,低焦油卷煙的發(fā)展步伐逐步加快,,低焦油卷煙銷售將是今后煙草銷售的主要趨勢。而面臨著前所未有的國內(nèi)外競爭壓力,作為連結(jié)煙草系統(tǒng)與消費者橋梁的零售客戶終端,可以說是決定煙草競爭力的關(guān)鍵。因此,如何挖掘具有發(fā)展?jié)摿Φ母邇r值零售客戶,促進(jìn)卷煙零售客戶經(jīng)營發(fā)展向煙草行業(yè)發(fā)展方向靠攏是當(dāng)前煙草網(wǎng)建工作的重中之重。 從煙草企業(yè)的客戶服務(wù)策略來看,分析型CRM是未來發(fā)展的趨勢,通過對操作型CRM中的數(shù)據(jù)進(jìn)行提取、分析和預(yù)測,把大量的數(shù)據(jù)轉(zhuǎn)換成可靠實用的信息,指導(dǎo)煙草企業(yè)在卷煙銷售與客戶服務(wù)等方面合理配置資源,最終實現(xiàn)改進(jìn)客戶關(guān)系的目的。煙草商業(yè)企業(yè)在經(jīng)營過程中積累了大量的客戶訂單數(shù)據(jù),利用數(shù)據(jù)挖掘技術(shù)對客戶訂單數(shù)據(jù)進(jìn)行分析,將客戶進(jìn)行細(xì)分,從而對在低焦油卷煙方面具有較大銷售潛力、培育價值高的客戶實施個性化服務(wù),使客戶發(fā)展與企業(yè)發(fā)展相互促進(jìn),實現(xiàn)客戶利潤與企業(yè)效益最大化。 本文是基于微軟SQL ServerAnalysis Service(SSAS)進(jìn)行數(shù)據(jù)挖掘,主要采用基于Web的B/S體系結(jié)構(gòu),包括數(shù)據(jù)源、數(shù)據(jù)倉庫、OLAP、應(yīng)用服務(wù)器和客戶端。根據(jù)煙草營銷的實際分析需求,在SQL Server2005中建立基于零售客戶卷煙銷售為主題的數(shù)據(jù)倉庫,且從源數(shù)據(jù)庫中抽取、轉(zhuǎn)換和導(dǎo)入相關(guān)數(shù)據(jù)到數(shù)據(jù)倉庫中。接著在數(shù)據(jù)倉庫上通過SSAS對分析主題建立對應(yīng)的多維數(shù)據(jù)集,用DMX語言實現(xiàn)各種分析需求和數(shù)據(jù)的鉆取、切片、切塊,并用微軟Reporting services開發(fā)基于web的前端數(shù)據(jù)展現(xiàn)。 本文將研究的廣州煙草某區(qū)域歷史銷售數(shù)據(jù)導(dǎo)入到SQL Server數(shù)據(jù)庫中作為挖掘的數(shù)據(jù)源,并使用SSAS作為數(shù)據(jù)挖掘平臺,構(gòu)建數(shù)據(jù)挖掘模型,并采用決策樹分類技術(shù)進(jìn)行數(shù)據(jù)挖掘,實現(xiàn)對卷煙銷售趨勢的決策分析。并且,通過分析客戶的銷售數(shù)據(jù)挖掘卷煙零售客戶的銷售潛力,并對潛力客戶價值進(jìn)行分級排序,找出培育價值高的潛力客戶。
[Abstract]:In recent years, with the increasing attention of the society to tobacco control, the intensity of tobacco control is increasing, and the development of low-tar cigarettes is gradually accelerated. The sales of low-tar cigarettes will be the main trend of tobacco sales in the future.Facing unprecedented domestic and international competition pressure, as a bridge between tobacco system and consumers, retail customer terminal can be said to be the key to determine the competitiveness of tobacco.Therefore, how to tap high-value retail customers with potential development, and promote the development of cigarette retail customers to the development direction of tobacco industry is the most important task of the current tobacco network construction.From the point of view of customer service strategy of tobacco enterprises, analytical CRM is the trend of future development. By extracting, analyzing and predicting the data in operational CRM, a large amount of data can be converted into reliable and practical information.To guide tobacco enterprises to allocate resources reasonably in cigarette sales and customer service, and to achieve the goal of improving customer relationship.Tobacco commercial enterprises have accumulated a large amount of customer order data in the course of operation. By using data mining technology to analyze customer order data and subdivide customers, tobacco commercial enterprises have great sales potential in low-tar cigarettes.Cultivate high value customers to carry out personalized service, make customer development and enterprise development promote each other, realize customer profit and enterprise benefit maximization.This paper is based on Microsoft SQL ServerAnalysis Service SSAS. It mainly adopts the B / S architecture based on Web, including data source, data warehouse, application server and client.According to the actual demand of tobacco marketing, a data warehouse based on the retail customer cigarette sales is established in SQL Server2005, and the relevant data is extracted, transformed and imported from the source database to the data warehouse.Then, the corresponding multidimensional data sets are established by SSAS on the data warehouse, and various analysis requirements and data are drilled, sliced and cut by DMX language. The front-end data display based on web is developed by Microsoft Reporting services.In this paper, the historical sales data of Guangzhou tobacco region are imported into the SQL Server database as the data source, and the data mining model is constructed by using SSAS as the data mining platform, and the decision tree classification technology is used to mine the data.To realize the decision analysis of cigarette sales trend.Furthermore, through analyzing the sales data of customers, mining the sales potential of cigarette retail customers, and ranking the potential customer value, we can find out the potential customers with high value.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王永梅;胡學(xué)鋼;;決策樹中ID3算法的研究[J];安徽大學(xué)學(xué)報(自然科學(xué)版);2011年03期
2 程韋;蘇志同;;數(shù)據(jù)挖掘技術(shù)在現(xiàn)代信息管理系統(tǒng)中的研究與分析[J];北京工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報;2008年04期
3 楊玉;;KDD在零售業(yè)客戶關(guān)系管理中的應(yīng)用分析研究[J];商業(yè)研究;2008年12期
4 王桂芹;黃道;;數(shù)據(jù)挖掘技術(shù)綜述[J];電腦應(yīng)用技術(shù);2007年02期
5 陳建輝;;一種基于數(shù)據(jù)挖掘的CRM系統(tǒng)框架的實現(xiàn)[J];華北水利水電學(xué)院學(xué)報;2007年05期
6 杜建軍;李海玉;馬蓉;;數(shù)據(jù)預(yù)處理與決策樹在客戶行為分析中的應(yīng)用[J];信息技術(shù);2008年12期
7 覃華,蘇一丹,何慧;基于免疫遺傳神經(jīng)網(wǎng)絡(luò)的CRM數(shù)據(jù)挖掘模型的設(shè)計與實現(xiàn)[J];計算機(jī)工程與應(yīng)用;2005年14期
8 柳林;涂光平;楊峰;;基于決策樹的數(shù)據(jù)挖掘方法在CRM中的應(yīng)用研究[J];計算技術(shù)與自動化;2006年01期
9 張朝暉,陸玉昌,張鈸;利用神經(jīng)網(wǎng)絡(luò)發(fā)現(xiàn)分類規(guī)則[J];計算機(jī)學(xué)報;1999年01期
10 國宏偉;劉燕馳;梁合蘭;武森;;多變量時間序列的模糊決策樹挖掘[J];計算機(jī)應(yīng)用研究;2009年01期
本文編號:1716416
本文鏈接:http://sikaile.net/guanlilunwen/kehuguanxiguanli/1716416.html