數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘在商業(yè)銀行客戶關(guān)系管理中的應(yīng)用
本文關(guān)鍵詞: 數(shù)據(jù)倉(cāng)庫(kù) 數(shù)據(jù)挖掘 客戶關(guān)系管理 OLAP K-Means X-Means 出處:《長(zhǎng)安大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著計(jì)算機(jī)技術(shù)的發(fā)展,數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘技術(shù)也越來(lái)越多地被應(yīng)用到社會(huì)的各個(gè)行業(yè),尤其是那些存儲(chǔ)著海量客戶信息的行業(yè):如電信業(yè)、金融業(yè)、零售業(yè)等。這些行業(yè)之間的競(jìng)爭(zhēng)歸根結(jié)底是對(duì)客戶歸屬處的競(jìng)爭(zhēng),因此掌握客戶信息,從眾多客戶信息中挖掘出對(duì)自己有利的信息則至關(guān)重要。數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘技術(shù)可以幫助這些企業(yè)來(lái)分析客戶信息,并且可以預(yù)測(cè)客戶的消費(fèi)趨勢(shì),幫助企業(yè)留住現(xiàn)有客戶,挖掘潛在客戶,從而幫助企業(yè)降低成本,增加收入,在競(jìng)爭(zhēng)中立于不敗之地。 本文主要研究的是數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘技術(shù)在銀行客戶關(guān)系管理中的應(yīng)用。以銀行客戶信息為背景,利用數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘技術(shù),主要做了以下工作: (1)基于Solaris10的DB2數(shù)據(jù)庫(kù)建立了數(shù)據(jù)倉(cāng)庫(kù)模型。模型有三個(gè)模式,ODS、EDW和DDW模式。模式和模式之間的數(shù)據(jù)導(dǎo)入是通過(guò)ETL來(lái)實(shí)現(xiàn)的。 (2)利用SQLServer的BIDS組件的OLAP技術(shù)分析客戶賬戶信息、客戶貸款賬戶信息和銀行各分行的交易信息。 (3)利用數(shù)據(jù)挖掘技術(shù),對(duì)數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)進(jìn)行再處理。使用數(shù)據(jù)用例分析了DBSCAN算法、K-Means算法和X-Means算法的優(yōu)缺點(diǎn),最后采用X-Means算法來(lái)實(shí)現(xiàn)個(gè)人客戶群體細(xì)分。在此基礎(chǔ)上,利用FP-Growth算法實(shí)現(xiàn)了銀行業(yè)務(wù)的交叉營(yíng)銷。 本文分析內(nèi)容有一定的實(shí)際和理論意義,,可以為銀行的決策者提供科學(xué)的決策支持。
[Abstract]:With the development of computer technology, data warehouse and data mining technology are more and more applied to every industry of society, especially those which store huge amount of customer information, such as telecommunication industry, financial industry, Retailing and so on. The competition between these industries is ultimately a competition for customer ownership, so we have customer information. Data warehouse and data mining technology can help these enterprises to analyze customer information, and can predict customer consumption trend and help enterprises retain existing customers. Mining potential customers to help enterprises reduce costs, increase revenue, in the competition in an invincible position. This paper mainly studies the application of data warehouse and data mining technology in bank customer relationship management. With the background of bank customer information, using data warehouse and data mining technology, the main work is as follows:. 1) the data warehouse model is established based on the DB2 database of Solaris10. There are three modes in the model: ODS-EDW and DDW. The data import between schema and schema is realized by ETL. Using OLAP technology of BIDS component of SQLServer to analyze customer account information, customer loan account information and transaction information of bank branches. Data mining technology is used to reprocess the data in data warehouse. The advantages and disadvantages of DBSCAN algorithm, K-Means algorithm and X-Means algorithm are analyzed by using data case. Finally, X-Means algorithm is used to realize individual customer group segmentation. The cross-marketing of bank business is realized by FP-Growth algorithm. This paper has some practical and theoretical significance and can provide scientific decision support for bank decision-makers.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉子輝;;數(shù)據(jù)挖掘技術(shù)及Web應(yīng)用[J];信息安全與技術(shù);2010年10期
2 李小慶;;銀行數(shù)據(jù)挖掘與知識(shí)發(fā)現(xiàn)技術(shù)全景分析[J];華南金融電腦;2010年11期
3 鄭承滿;;數(shù)據(jù)倉(cāng)庫(kù)技術(shù)在商業(yè)銀行中的應(yīng)用與發(fā)展趨勢(shì)[J];中國(guó)金融電腦;2010年07期
4 黃洪;洪毅;;支持交叉營(yíng)銷的金融產(chǎn)品客戶數(shù)據(jù)挖掘[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2010年05期
5 花海洋;趙懷慈;;聚類算法在銀行客戶細(xì)分中的應(yīng)用[J];計(jì)算機(jī)工程;2008年24期
6 譚漢松;陳才;張宗盛;;數(shù)據(jù)倉(cāng)庫(kù)在商業(yè)銀行CRM中的應(yīng)用研究[J];科技廣場(chǎng);2008年01期
7 彭建璁;李曉斌;卿麗妍;;數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘技術(shù)在商業(yè)銀行CRM中的應(yīng)用[J];網(wǎng)絡(luò)安全技術(shù)與應(yīng)用;2006年10期
8 張穎,杜斌,鐘永紅;數(shù)據(jù)挖掘技術(shù)在銀行客戶關(guān)系管理中的應(yīng)用分析[J];經(jīng)濟(jì)師;2005年03期
9 黃解軍,萬(wàn)幼川,潘和平;銀行客戶關(guān)系管理與數(shù)據(jù)挖掘的應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2003年07期
10 史麗萍,駱軍;客戶關(guān)系管理(CRM)的理論及應(yīng)用探討[J];物流科技;2003年02期
相關(guān)碩士學(xué)位論文 前1條
1 譚康榮;基于數(shù)據(jù)挖掘的銀行客戶關(guān)系管理的構(gòu)建與實(shí)施[D];重慶大學(xué);2007年
本文編號(hào):1502286
本文鏈接:http://sikaile.net/guanlilunwen/kehuguanxiguanli/1502286.html