新橋礦爆破工藝與參數(shù)優(yōu)化
發(fā)布時間:2019-02-13 12:22
【摘要】:為解決新橋礦大塊率高、炸藥單耗高及爆破效率低等問題,在對爆破工藝改進(jìn)的基礎(chǔ)上設(shè)計有限的爆破試驗(13組試驗)獲取樣本,并建立BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型(隱含層節(jié)點(diǎn)數(shù)取9),以最小抵抗線W、孔間距a、周邊孔距Z作為輸入因子,以炸藥單耗、大塊率作為輸出因子預(yù)測、優(yōu)選爆破參數(shù)。優(yōu)化推薦W=0.8 m、a=1 m、Z=0.8 m,對應(yīng)的炸藥單耗為0.2001 kg/t,僅為原工藝的50%;大塊率為5.2091%,僅為原工藝的20%;生產(chǎn)效率提高了約65%。該方法采用有限的試驗與智能預(yù)測相結(jié)合,實現(xiàn)低成本獲取真實樣本,并提高了預(yù)測精度。
[Abstract]:In order to solve the problems of high bulk ratio, high explosive unit consumption and low blasting efficiency in Xinqiao Mine, a limited blasting test (13 sets of tests) was designed on the basis of the improvement of blasting technology. The prediction model of BP neural network is established. The minimum resistance line W, hole spacing a, peripheral hole spacing Z are taken as input factors, explosive unit consumption and bulk rate are used as output factors, and blasting parameters are selected. It is recommended that the unit consumption of 0.2001 kg/t, is only 50 of the original process, and the bulk rate is 5.2091, which is only 20% of the original process. The production efficiency has been improved by about 65%. The method combines limited experiments with intelligent prediction to obtain real samples at low cost and improve prediction accuracy.
【作者單位】: 中南大學(xué)資源與安全工程學(xué)院;中國五礦集團(tuán)公司五礦勘查開發(fā)有限公司;南華大學(xué)環(huán)境保護(hù)與安全工程學(xué)院;
【基金】:國家自然科學(xué)基金(11472311) 湖南省安全開采重點(diǎn)試驗室開放基金(201203)
【分類號】:TD235.4
本文編號:2421543
[Abstract]:In order to solve the problems of high bulk ratio, high explosive unit consumption and low blasting efficiency in Xinqiao Mine, a limited blasting test (13 sets of tests) was designed on the basis of the improvement of blasting technology. The prediction model of BP neural network is established. The minimum resistance line W, hole spacing a, peripheral hole spacing Z are taken as input factors, explosive unit consumption and bulk rate are used as output factors, and blasting parameters are selected. It is recommended that the unit consumption of 0.2001 kg/t, is only 50 of the original process, and the bulk rate is 5.2091, which is only 20% of the original process. The production efficiency has been improved by about 65%. The method combines limited experiments with intelligent prediction to obtain real samples at low cost and improve prediction accuracy.
【作者單位】: 中南大學(xué)資源與安全工程學(xué)院;中國五礦集團(tuán)公司五礦勘查開發(fā)有限公司;南華大學(xué)環(huán)境保護(hù)與安全工程學(xué)院;
【基金】:國家自然科學(xué)基金(11472311) 湖南省安全開采重點(diǎn)試驗室開放基金(201203)
【分類號】:TD235.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 劉國藻;周耕莘;\孝飛;;第一銻擺大眼爆破試驗小結(jié)[J];有色金屬;1956年01期
2 周昌達(dá);;大眼爆破試驗[J];有色金屬;1956年06期
3 呂學(xué)清;模糊數(shù)學(xué)聚類分析方法在爆破試驗參數(shù)指標(biāo)分析中的應(yīng)用[J];爆破;1995年02期
4 馬芹永;模型爆破試驗相似材料及相似炸藥的確定[J];煤;1996年01期
5 ;斜井?dāng)U底(藥壺)爆破試驗情況[J];探礦工程;1959年01期
6 張世雄,朱瑞康,吳純佑;混凝土面板堆石壩壩料開采爆破試驗[J];爆破;1997年04期
7 趙福財;多空眼直線掏槽爆破試驗[J];探礦工程;1989年01期
8 В.И.梅利楚柯夫;肖煥杰;;為制訂鑿巖爆破說明書的爆破試驗[J];國外采礦技術(shù)快報;1986年13期
相關(guān)重要報紙文章 前1條
1 龔杰;宜春鉭鈮礦大孔徑爆破試驗成功[N];中國有色金屬報;2002年
,本文編號:2421543
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2421543.html
最近更新
教材專著