基于空間稀疏的匹配場(chǎng)源定位
[Abstract]:Matching field processing is one of the main methods of underwater passive source location. The resolution of conventional matching field processing methods is low and the sidelobe is high. Therefore, the problem of improving the resolution is an important target of the matching field processing technology, which has been widely concerned by researchers all over the world. Compression perception theory proposes a new information acquisition guidance theory, which breaks the limitation of the traditional sampling theorem, uses random sampling to obtain samples, and then uses nonlinear reconstruction algorithm to reconstruct the signal perfectly. This theory further improves and enriches the signal sparse representation theory and is an important change in modern information theory. Therefore, based on the research results of sparse reconstruction theory, this paper studies the location method of matched field sound source based on spatial sparsity. Firstly, based on the sparsity of the matching field location search space and the ocean sound field model, the model of the matching field location signal based on the spatial sparsity theory is studied in this paper. Secondly, the sparse representation model based on L1 norm is used in sparse reconstruction theory. The purpose of this model is to solve the problem conveniently. Therefore, this paper also studies the matching field source location method based on l0 norm, and proposes a fast algorithm, that is, smooth l0-norm matched field source localization method, aiming at the problem of high computational complexity of l0-norm method. The simulation results show that the proposed method is feasible and effective, and the reconstruction accuracy is high, the spatial resolution is high, and the estimation performance is good at low signal-to-noise ratio (SNR). It makes up for the slow operation speed and high complexity of the existing matching field source location methods based on spatial sparsity. Then, aiming at the problem that the estimation of approximate l0 norm of smoothing l0 algorithm is imprecise and the convergence rate is slow, on the basis of studying the principle of smoothing l0 norm, an improvement is made on it, and a steeper approximation function is selected to improve the convergence speed. Combined with damped Newton method, a matching field source location method based on improved smoothing l0 norm is proposed. The simulation results show that the proposed method can greatly reduce the computational complexity of sparse reconstruction signal and reduce the time of location. Compared with smooth l0 norm, the success rate of improved smooth l0 norm localization is higher. Finally, the spatial sparseness of the matched field source location method based on spatial sparsity is mainly used, and the sparse property of the signal structure is not considered. When the sound source is located in space, the target signal itself presents the sparse property of block structure. Therefore, the other work of this paper is to establish a structural sparse representation model of matched field sound source location based on multi-observation model, and to propose a method of matching field source location based on structural sparsity. The simulation results show that the reconstruction method has higher spatial resolution and better location performance under low SNR.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB56
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 劉曉春;彭仕政;談榮日;;腦電磁場(chǎng)及腦內(nèi)源定位的研究進(jìn)展[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2006年06期
2 李軍;腦磁源的定位研究[J];生物物理學(xué)報(bào);2000年02期
3 陳亞勝,金貴昌,周桂榮,鄭竺英;兩種視覺刺激狀態(tài)VEP的源定位分析[J];生物物理學(xué)報(bào);1997年01期
4 秦飛舟;吳辰寧;;基于分布式光纖溫度傳感器的熱源定位方法[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
5 阮放鳴;小波變換在MEG場(chǎng)源定位中的應(yīng)用[J];貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
6 張明吉;王三勝;;基于SQUID梯度計(jì)的單磁源定位及磁矩反演誤差分析[J];低溫與超導(dǎo);2013年03期
7 饒利蕓,顏威利,汪友華,何任杰,白凈,葉大田;生物醫(yī)學(xué)電磁逆問題及其數(shù)值計(jì)算方法[J];國(guó)外醫(yī)學(xué).生物醫(yī)學(xué)工程分冊(cè);1997年05期
相關(guān)會(huì)議論文 前3條
1 陳東兵;;放射源定位追蹤管理系統(tǒng)設(shè)計(jì)思路[A];2012中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第二卷)[C];2012年
2 盧文韜;徐一平;劉克林;;聲發(fā)射相位對(duì)小試件源定位的影響[A];1990巖土混凝土聲測(cè)技術(shù)新進(jìn)展學(xué)術(shù)與信息交流會(huì)專題報(bào)告及論文摘要匯編[C];1990年
3 幸琳;姚陳果;周電波;肖前波;毛峰;秦延山;;基于頻域求時(shí)差的GIS局放源定位初探[A];重慶市電機(jī)工程學(xué)會(huì)2010年學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前9條
1 Sheikh Yawar Ali;基于進(jìn)化技術(shù)的近場(chǎng)聲源定位研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
2 喬梁;信源定位的可觀測(cè)性及跟蹤技術(shù)研究[D];哈爾濱工程大學(xué);2010年
3 霍小林;腦磁源定位技術(shù)研究[D];浙江大學(xué);2001年
4 王陽;動(dòng)態(tài)氣流環(huán)境下氣味煙羽仿真與氣味源定位[D];天津大學(xué);2013年
5 曹孟犁;協(xié)作式多無線傳感節(jié)點(diǎn)氣味源定位[D];天津大學(xué);2016年
6 劉國(guó)紅;遠(yuǎn)近場(chǎng)混合源定位參量估計(jì)算法研究[D];吉林大學(xué);2015年
7 吳玉秀;基于嗅覺移動(dòng)傳感器網(wǎng)絡(luò)的氣體源定位[D];天津大學(xué);2014年
8 周鳳增;煤礦井下自燃火源定位技術(shù)的研究與應(yīng)用[D];中國(guó)礦業(yè)大學(xué)(北京);2010年
9 張軍鵬;腦電磁源定位算法研究及其在初級(jí)聽覺皮層定位中的應(yīng)用[D];電子科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 蔣亞立;基于空間稀疏的匹配場(chǎng)源定位[D];江蘇科技大學(xué);2017年
2 劉文華;國(guó)內(nèi)配電網(wǎng)電壓跌落源定位技術(shù)研究[D];山東大學(xué);2015年
3 劉壯;短時(shí)脈沖聲源定位技術(shù)研究[D];吉林大學(xué);2016年
4 李卓;基于聲發(fā)射的載人密封艙撞擊源定位技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2016年
5 劉文強(qiáng);一種自發(fā)放電源定位系統(tǒng)研究[D];西京學(xué)院;2017年
6 商顯俊;電力系統(tǒng)低頻振蕩擾動(dòng)源定位研究[D];華北電力大學(xué);2016年
7 石繪紅;基于稀疏重建的高分辨力匹配場(chǎng)源定位[D];浙江大學(xué);2013年
8 宋紅兵;一種基于城市環(huán)境的新型的源定位方法[D];浙江大學(xué);2010年
9 楊磊;基于仿生嗅覺的味源定位系統(tǒng)研究[D];浙江理工大學(xué);2014年
10 陳磊;復(fù)雜海洋噪聲環(huán)境下近場(chǎng)源定位算法的仿真分析[D];吉林大學(xué);2015年
,本文編號(hào):2367598
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/2367598.html