大面積氧化物薄膜材料的微納結(jié)構(gòu)可控制備與性能調(diào)控技術(shù)
本文選題:氧化物薄膜 + 微納結(jié)構(gòu)。 參考:《浙江大學(xué)》2014年博士論文
【摘要】:鍍膜玻璃是最主要的新型建筑節(jié)能玻璃,既可以保持玻璃的透光性,又可以高效阻隔熱量的傳遞,賦予普通平板玻璃特殊的功能,滿足節(jié)能、環(huán)保、安全和裝飾等多種需求,按功能可分為陽(yáng)光控制鍍膜玻璃、低輻射鍍膜玻璃、自清潔鍍膜玻璃等。利用不同氧化物材料各自的物理和化學(xué)性能,采用浮法在線化學(xué)氣相沉積技術(shù),通過(guò)對(duì)氧化物薄膜微納結(jié)構(gòu)與性能的調(diào)控,以實(shí)現(xiàn)節(jié)能鍍膜玻璃大面積均勻與高性能的兼顧,在建筑節(jié)能領(lǐng)域有著廣闊的應(yīng)用前景。同時(shí),開(kāi)展納米尺度氧化物薄膜的可控制備,研究制備工藝-結(jié)構(gòu)-性能之間的相互關(guān)系,對(duì)于這類材料的發(fā)展及應(yīng)用拓寬具有重要的科學(xué)意義。 本文首先簡(jiǎn)要概述了建筑節(jié)能鍍膜玻璃的研究與應(yīng)用現(xiàn)狀,主要針對(duì)低輻射鍍膜玻璃與自清潔鍍膜玻璃,重點(diǎn)總結(jié)和評(píng)述了以SnO2:F為代表的透明導(dǎo)電薄膜和Ti02薄膜的制備與性能的研究現(xiàn)狀,以及該類薄膜具有節(jié)能效果的原理。針對(duì)氧化物薄膜制備中存在的大面積均勻穩(wěn)定鍍膜困難、多層膜結(jié)構(gòu)匹配與節(jié)能優(yōu)化技術(shù)缺乏等問(wèn)題,提出開(kāi)展新型節(jié)能玻璃的材料膜系設(shè)計(jì)、多層匹配和微結(jié)構(gòu)調(diào)控技術(shù)的研究,本文采用浮法在線化學(xué)氣相沉積技術(shù),在玻璃表面首次制得微納結(jié)構(gòu)SnO2:F薄膜、納米鑲嵌結(jié)構(gòu)SiCxOy薄膜以及納米Ti02薄膜。采用多種分析測(cè)試技術(shù)對(duì)三類薄膜的結(jié)構(gòu)、均勻性、穩(wěn)定性、光學(xué)性能、電學(xué)性能和親水性等性能進(jìn)行了研究。同時(shí)系統(tǒng)研究了低輻射鍍膜玻璃在溫度場(chǎng)作用下結(jié)構(gòu)與性能變化的過(guò)程與機(jī)理。本文主要研究?jī)?nèi)容和結(jié)果如下: (1)采用浮法在線MOCVD法,以單丁基氯化錫和三氟乙酸作為先驅(qū)體,通過(guò)反應(yīng)溫度、薄膜前驅(qū)體流量等工藝參數(shù)調(diào)控、退火處理等手段控制晶體成核-生長(zhǎng)過(guò)程,首次在玻璃基體表面制得了大面積、均勻、金紅石相、柱狀生長(zhǎng)的微納結(jié)構(gòu)SnO2:F薄膜,即薄膜是由尺寸為5nm-10nm的SnO2晶粒取向聚集成的100nm-300nm顆粒所形成。微納結(jié)構(gòu)的SnO2:F薄膜通過(guò)對(duì)載流子的散射作用,有利于薄膜獲得更為優(yōu)異的低輻射性能。通過(guò)結(jié)構(gòu)的調(diào)控,獲得了霧度值達(dá)到~10.3%,方塊電阻~11Ω·sq-1,輻射率低于0.16,可見(jiàn)光品質(zhì)因數(shù)~10-3數(shù)量級(jí),硬度值達(dá)到15.08GPa,楊氏模量達(dá)到206.93GPa的SnO2:F透明導(dǎo)電薄膜,該類薄膜在低輻射鍍膜玻璃與薄膜太陽(yáng)能電池領(lǐng)域具有很好的應(yīng)用前景。 (2)采用浮法在線常壓CVD法,以硅烷、乙烯、CO2作為前驅(qū)體,通過(guò)控制表面梯度氧化、薄膜沉積的反應(yīng)溫度和時(shí)間等參數(shù)調(diào)節(jié)納米Si成核-生長(zhǎng)過(guò)程,獲得了大面積、均勻的納米鑲嵌SiCxOy薄膜,即由5nm大小的Si晶粒均勻鑲嵌在Si-C-O無(wú)序網(wǎng)絡(luò)中形成。這類薄膜被選擇作為阻擋層的膜層材料。 (3)結(jié)合SnO2:F薄膜和SiCxOy薄膜的制備,在浮法生產(chǎn)線上,采用熱分解CVD方法在錫槽內(nèi)鍍硅碳氧等多元化合物薄膜,然后采用MOCVD方法在退火窯內(nèi)鍍氧化錫等氧化物薄膜,制備得到了大面積、均勻的SnO2:F/SiCxOy復(fù)合鍍膜玻璃。采用FIB-TEM手段,觀察到了薄膜的三明治結(jié)構(gòu),其中SnO2:F膜層趨于柱狀生長(zhǎng),具有很好的結(jié)晶性,SiCxOy阻擋層為多層納米鑲嵌結(jié)構(gòu),在膜層與膜層之間存在元素組分的過(guò)渡層。 (4)系統(tǒng)研究了阻擋層對(duì)SnO2:F薄膜結(jié)構(gòu)與性能的影響,選擇了SiCxOy和SixSnyO2作為阻擋層膜層材料進(jìn)行研究和對(duì)比。具有阻擋層的SnO2:F薄膜具有更為均勻的表面形貌,顆粒分布在~200nm-300nm,且呈現(xiàn)更為明顯的金字塔結(jié)構(gòu)。阻擋層的引入彌補(bǔ)SnO2:F膜層與玻璃基體之間由于晶格不匹配而產(chǎn)生的大量孔洞,保證了膜層之間較好的結(jié)合力,改善了薄膜的力學(xué)性能。在結(jié)構(gòu)上,阻擋層的引入提高了SnO2:F薄膜的結(jié)晶性,增強(qiáng)了其在(200)晶面的取向生長(zhǎng)。在性能上,由于結(jié)構(gòu)與形貌的改善,且阻擋了玻璃基體中的Na+、K+離子的擴(kuò)散,具有阻擋層尤其是SiCxOy阻擋層的SnO2:F薄膜具有更為優(yōu)異的光電學(xué)性能,電阻率下降到4.9×10-4,中遠(yuǎn)紅外反射率提高到~85%,輻射率降低到0.16。因此,SiCxOy薄膜為一種理想的運(yùn)用于FTO薄膜的阻擋層材料。 (5)對(duì)低輻射鍍膜玻璃的穩(wěn)定性進(jìn)行了研究,發(fā)現(xiàn)當(dāng)較長(zhǎng)時(shí)間熱處理且溫度高于~580℃,將導(dǎo)致薄膜中微米尺寸的多面體顆粒分裂成納米尺寸小顆粒,同時(shí)產(chǎn)生大量的顆粒界面,這些界面的產(chǎn)生使SnO2:F薄膜的霍爾遷移率和方塊電阻增大,進(jìn)而導(dǎo)致薄膜低輻射性能的劣化。定義了一個(gè)“H”因子來(lái)定量標(biāo)定SnO2:F薄膜表面形貌的一致程度,并且將其與薄膜的性能聯(lián)系起來(lái),從而通過(guò)表面形貌的變化來(lái)考察薄膜的性能。發(fā)現(xiàn)低的“H”因子對(duì)應(yīng)于低輻射性能較優(yōu)異,方塊電阻較小,對(duì)低輻射鍍膜玻璃的工業(yè)化生產(chǎn)具有指導(dǎo)意義。 (6)模擬了玻璃鋼化的過(guò)程,研究了原位和非原位鋼化過(guò)程中SnO2:F低輻射鍍膜玻璃結(jié)構(gòu)與性能的變化。當(dāng)鋼化溫度達(dá)到650℃,鋼化時(shí)間大于10min,薄膜的方塊電阻明顯增大、中遠(yuǎn)紅外反射率降低、低輻射性能明顯變差。這是由于薄膜在空氣中高溫處理,氧氣的化學(xué)吸附和F的向外擴(kuò)散,導(dǎo)致了薄膜空位的減少,載流子濃度的降低。同時(shí),薄膜內(nèi)部界面的變化,通過(guò)界面散射導(dǎo)致薄膜霍爾遷移率的明顯降低。因此,薄膜的載流子濃度和霍爾遷移率發(fā)生明顯下降,最終導(dǎo)致薄膜光電性能的劣化。為了保證SnO2:F低輻射鍍膜玻璃在鋼化過(guò)程中保持較好的光電性能以及滿足國(guó)家標(biāo)準(zhǔn)的低輻射率,鋼化時(shí)間需控制在10min之內(nèi)。 (7)以四異丙醇鈦(TTIP)作為先驅(qū)體,采用常壓MOCVD方法,通過(guò)控制鍍膜溫度、鍍膜氣體流量和速度,控制晶體成核-生長(zhǎng)過(guò)程,在玻璃基體表面快速制備出大面積、均勻的TiO2薄膜,該類薄膜為一種銳鈦礦相結(jié)構(gòu)納米薄膜,由尺寸小于10nm的TiO2納米晶粒組成,表面均勻、致密,粗糙度小于10nm,從光學(xué)參數(shù)上分析可以分為致密層與表面粗糙層,具有較好的結(jié)晶性,晶態(tài)含量大于60%。 (8)通過(guò)調(diào)控TTIP濃度和前驅(qū)體總流量,系統(tǒng)研究了浮法在線制備參數(shù)對(duì)TiO2薄膜結(jié)構(gòu)與形貌的影響,優(yōu)化了銳鈦礦相TiO2薄膜的結(jié)晶性,獲得了表面致密、粗糙度小于5nm的納米TiO2薄膜。同時(shí),該類薄膜兼具優(yōu)異的可見(jiàn)光透過(guò)率和親水性,滿足自清潔鍍膜玻璃對(duì)采光和自清潔性能的要求,是一種較為理想的陽(yáng)光易潔鍍膜玻璃。
[Abstract]:Coated glass is the most important new type of building energy saving glass. It can not only keep the light transmittance of glass, but also effectively block the transfer of heat. It gives the special function of ordinary flat glass to meet the needs of energy saving, environmental protection, safety and decoration. According to the function, it can be divided into sunlight controlled coating glass, low radiation coated glass and self cleaning coating glass. Using the physical and chemical properties of different oxide materials, using floating on line chemical vapor deposition (CVD), through the control of the microstructure and properties of the oxide film, in order to realize the large area uniformity and high performance of the energy-saving coating glass, it has a broad application prospect in the energy saving area of the building. At the same time, the nano scale is carried out. The controllable preparation of the oxide film and the study of the relationship between the structure and properties of the preparation process are of great scientific significance for the development and application of this kind of materials.
In this paper, the research and application of energy saving coated glass for building is briefly summarized. The research status of the preparation and performance of transparent conductive and Ti02 films, represented by SnO2:F, is mainly summarized and reviewed, mainly for low radiation coated glass and self cleaning coated glass. The film system of large area and uniform stability in the preparation of chemical film is difficult, the structure matching of multilayer film and the lack of energy saving optimization technology are lacking. The material membrane system design of the new type energy saving glass, multi-layer matching and micro structure control technology are put forward. In this paper, the float process on-line gas phase deposition technology is used in this paper to make the micro surface of the glass for the first time. Nanoscale SnO2:F film, nanostructured SiCxOy film and nano Ti02 thin film are used to study the structure, uniformity, stability, optical properties, electrical properties and hydrophilic properties of the three types of thin films, and the structure and properties of low radiation coated glass under the temperature field are studied systematically. The main contents and results of this study are as follows:
(1) using the buoy on-line MOCVD method, using the single butyl tin chloride and three FLUOROACETIC acid as the precursor, through the reaction temperature, the membrane precursor flow and other technological parameters control, annealing treatment and other means to control the crystal nucleation and growth process, for the first time, the large surface, uniform, rutile and columnar growth of the micro nano structure SnO2:F thin on the surface of the glass matrix is made. The film, that is, is formed by the SnO2 grain oriented 100nm-300nm particles with the size of 5nm-10nm. The micro nano structure SnO2:F thin film is beneficial to the film to obtain more excellent low radiation performance through the scattering of the carrier. Through the structure regulation, the fog value is reached to 10.3%, the block resistance to 11 Omega SQ-1, the radiation rate. Under 0.16, the visible light quality factor is 10-3 orders of magnitude, the hardness value reaches 15.08GPa and the young's modulus reaches 206.93GPa SnO2:F transparent conductive film. This kind of film has a good application prospect in the field of low radiation coated glass and thin film solar cells.
(2) using the floating on-line atmospheric pressure CVD method, using silane, ethylene and CO2 as precursors, by controlling the surface gradient oxidation, the reaction temperature and time of the film deposition, the nanoscale Si nucleation and growth process are adjusted. A large area, uniform nanoscale SiCxOy film is obtained, that is, the Si grains of 5nm size are inlaid evenly in the Si-C-O disorder network. These films are selected as barrier coatings.
(3) combined with the preparation of SnO2:F film and SiCxOy film, on the float production line, the thin film of silicon carbon oxygen and other compounds was plated by thermal decomposition CVD method in the tin slot. Then MOCVD method was used to plating tin oxide thin film in the annealing kiln, and a large area and uniform SnO2:F/SiCxOy composite coating glass was prepared. FIB-TEM method was used. The sandwich structure of the film is observed, in which the SnO2:F film tends to columnar growth and has good crystallinity. The SiCxOy barrier layer is a multilayer nanomosaic structure, and there is a transition layer between the element components between the film and the film layer.
(4) the influence of barrier layer on the structure and properties of SnO2:F film is studied systematically. SiCxOy and SixSnyO2 are selected as barrier layer materials to study and compare. The SnO2:F films with barrier layer have more uniform surface morphology, the particles are distributed in 200nm-300nm, and the structure of Pyramid is more obvious. A large number of holes produced by the lattice mismatch between the SnO2:F film and the glass substrate ensure a better bonding force between the layers and improve the mechanical properties of the film. In structure, the introduction of the barrier layer improves the crystallinity of the SnO2:F film and enhances its orientation growth at (200) surface. In performance, due to structure and morphology The improvement has blocked the diffusion of Na+ and K+ ions in the glass matrix. The SnO2:F films with the barrier layer, especially the SiCxOy barrier layer, have better photoelectrical properties, the resistivity drops to 4.9 x 10-4, the mid far infrared reflectance is increased to 85%, the radiation rate is reduced to 0.16., and the SiCxOy film is an ideal resistance to the FTO film. Block material.
(5) the stability of low radiation coated glass is studied. It is found that when the heat treatment is longer and the temperature is higher than 580 C, the polyhedron particles in the thin film are divided into small size particles, and a large number of particle interfaces are produced. The production of these interfaces makes the Holzer mobility and the block resistance of the SnO2:F film increase. This leads to the deterioration of the low radiation performance of the film. A "H" factor is defined to calibrate the consistency of the surface morphology of the SnO2:F thin film, and it is associated with the properties of the film to investigate the performance of the film by the change of the surface morphology. It is found that the low "H" factor corresponds to the low radiation performance, and the block resistance is better. It is of little significance to the industrial production of low radiation coated glass.
(6) the process of glass tempering was simulated. The structure and properties of SnO2:F low radiation coated glass were studied in the process of in-situ and in situ steel. When the tempering temperature reached 650, the toughening time was greater than 10min, the block resistance of the film increased obviously, the albedo of the medium and far infrared decreased and the low radiation performance was obviously worse. This is due to the film in the air. The medium high temperature treatment, the chemical adsorption of oxygen and the outward diffusion of F lead to the decrease of the film vacancy and the decrease of the carrier concentration. At the same time, the change of the inner interface of the film leads to the apparent decrease of the mobility of the film Holzer by the interface scattering. Therefore, the carrier concentration and the mobility of the Holzer film are obviously decreased, and the film light is eventually led to the film light. In order to ensure the good photoelectric performance of the SnO2:F low radiation coated glass during the toughening process and meet the low radiation rate of the national standard, the tempering time should be controlled within the 10min.
(7) using four isopropanol titanium (TTIP) as a precursor, the normal pressure MOCVD method is used to control the nucleation and growth process of the crystal by controlling the temperature of the coating, the flow and velocity of the coating gas, and the large area and uniform TiO2 thin film is quickly prepared on the surface of the glass matrix. This kind of film is a kind of anatase phase structure nanomiltration, which is from the TiO2 nano size less than 10nm. The grain of rice is composed of uniform, compact surface, and the roughness is less than 10nm. From the optical parameters, it can be divided into dense layer and surface rough layer. It has good crystallinity and the crystalline content is greater than 60%..
(8) by controlling the TTIP concentration and the total flow rate of the precursor, the influence of the parameters on the structure and morphology of the TiO2 film was systematically studied. The crystallinity of the anatase TiO2 films was optimized. The nano TiO2 films with dense surface and less than 5nm were obtained. At the same time, the film has excellent visible light transmittance and hydrophilicity. Self cleaning coated glass is an ideal and easy to clean glass for sunlight.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB383.2;TQ171.72
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屈翠芬;高溫氧化物超導(dǎo)體的發(fā)展現(xiàn)狀[J];稀有金屬材料與工程;1989年02期
2 錢逸泰,楊森,王繼紅,傅佩珍,陳祖耀;剛玉型結(jié)構(gòu)氧化物薄膜的紅外光譜研究(英文)[J];化學(xué)物理學(xué)報(bào);1992年04期
3 李金隆,張鷹,魏賢華,鄧新武,李言榮;SrTiO_3薄膜的自組裝生長(zhǎng)[J];硅酸鹽學(xué)報(bào);2004年09期
4 謝根生;;復(fù)雜氧化物陶瓷薄膜的溶膠—凝膠法制備方法[J];陶瓷科學(xué)與藝術(shù);2005年05期
5 金鑫,姜繼森;鐵氧化物薄膜氣敏材料的制備及性能研究評(píng)述[J];材料科學(xué)與工程;2002年03期
6 于光龍,朱建國(guó),朱基亮,蘆葦,肖定全;PbTiO_3薄膜生長(zhǎng)的Monte Carlo模擬Ⅰ:模型與算法[J];功能材料;2005年10期
7 白云龍;孔祥華;何業(yè)東;趙海平;王向欣;胡守天;;電沉積涂層對(duì)取向硅鋼性能的影響[J];武鋼技術(shù);2006年02期
8 任書(shū)芳;孟軍虎;呂晉軍;楊生榮;;M_(N+1)AX_N相及其復(fù)合材料的摩擦學(xué)性能研究進(jìn)展[J];材料導(dǎo)報(bào);2009年01期
9 邵景珍;董偉偉;陶汝華;鄧贊紅;方曉東;;柔性透明導(dǎo)電氧化物薄膜的制備及其應(yīng)用[J];液晶與顯示;2009年05期
10 楊宏訓(xùn);黃妙良;韓鵬;姜奇?zhèn)?吳子豹;吳季懷;;染料敏化太陽(yáng)能電池研究進(jìn)展[J];材料導(dǎo)報(bào);2006年09期
相關(guān)會(huì)議論文 前10條
1 王蕾;王鳳平;潘禮慶;吳平;邱宏;劉還平;田躍;;表面薄氧化物薄膜層對(duì)坡莫合金薄膜磁電阻的影響[A];2003年納米和表面科學(xué)與技術(shù)全國(guó)會(huì)議論文摘要集[C];2003年
2 李言榮;;BaTiO_3類介電薄膜在GaN上的外延生長(zhǎng)和性能研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
3 葉正平;常錚;雷曉東;孫曉明;;鎳鋁混合氧化物薄膜的制備及其對(duì)水中S_2O_3~(2-)的電吸附脫除性能[A];中國(guó)化工學(xué)會(huì)2011年年會(huì)暨第四屆全國(guó)石油和化工行業(yè)節(jié)能節(jié)水減排技術(shù)論壇論文集[C];2011年
4 李紅霞;劉宏;王繼揚(yáng);崔紅梅;;透明導(dǎo)電氧化物薄膜的研究進(jìn)展[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年
5 李逢彬;汪勇;;以溶脹介孔化的嵌段共聚物為模板用原子層沉積方法制備三維連通的介孔氧化物薄膜的研究[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
6 呂惠賓;陳正豪;周岳亮;楊國(guó)楨;;原子尺度控制氧化物薄膜的激光分子束外延和特性研究[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊(cè))[C];2001年
7 郭華聰;謝必正;;微波等離子體輔助多離子束反應(yīng)共濺射裝置[A];第九屆全國(guó)核物理大會(huì)論文摘要匯編[C];1994年
8 王正鐸;劉忠偉;桑利軍;陳強(qiáng);;有機(jī)硅單體離化摻雜制備硅鋁二元氧化物薄膜[A];第十五屆全國(guó)等離子體科學(xué)技術(shù)會(huì)議會(huì)議摘要集[C];2011年
9 張群;黃麗;沈杰;章壯健;華中一;;渠道火花燒蝕法及其應(yīng)用[A];上海市真空學(xué)會(huì)成立20周年暨第九屆學(xué)術(shù)年會(huì)論文集[C];2005年
10 楊國(guó)楨;呂惠賓;陳正豪;崔大復(fù);周岳亮;朱湘東;;激光法制備原子尺度氧化物薄膜及其性能研究[A];第五屆全國(guó)光學(xué)前沿問(wèn)題研討會(huì)論文摘要集[C];2001年
相關(guān)重要報(bào)紙文章 前9條
1 唐偉;Ⅱ型激光分子束外延設(shè)備整體性能國(guó)際先進(jìn)[N];科技日?qǐng)?bào);2006年
2 李禾;呂惠賓:讓分子無(wú)處遁形[N];科技日?qǐng)?bào);2004年
3 吳瓊;談?wù)勌沾蓾穸葌鞲衅骷捌浒l(fā)展動(dòng)向[N];北京電子報(bào);2001年
4 牛五;用于LCD屏幕鍍膜的新工藝[N];中國(guó)電腦教育報(bào);2005年
5 張秀嫻;日本汽車用表面處理鋼板的開(kāi)發(fā)[N];世界金屬導(dǎo)報(bào);2004年
6 王靜 冀志江;加強(qiáng)基礎(chǔ)研究研發(fā)抗菌陶瓷[N];中國(guó)建材報(bào);2004年
7 王靜;加強(qiáng)研發(fā)抗菌陶瓷[N];廣東建設(shè)報(bào);2004年
8 路云;抗菌陶瓷引領(lǐng)行業(yè)發(fā)展方向[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2004年
9 王威 黃達(dá)泉 北京奧博泰科技有限公司工程師;TCO光伏玻璃光電性能分析與檢測(cè)[N];中國(guó)建材報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 彭蔚蔚;幾種功能氧化物薄膜結(jié)構(gòu)的同步輻射紅外與太赫茲光譜研究[D];武漢理工大學(xué);2012年
2 錢旭;幾種鋅基氧化物薄膜的原子層沉積制備、生長(zhǎng)特性與性能表征[D];南京大學(xué);2013年
3 熊飛;鈣鈦礦型氧化物薄膜的激光感生熱電電壓效應(yīng)及光探測(cè)器應(yīng)用[D];昆明理工大學(xué);2008年
4 崔健;硅基納米結(jié)構(gòu)及功能氧化物薄膜的分子束外延生長(zhǎng)與特性研究[D];復(fù)旦大學(xué);2011年
5 陳聰;鈣鈦礦氧化物薄膜的電學(xué)及光學(xué)非線性特性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
6 楊銘;NiO基p型透明導(dǎo)電氧化物薄膜及其二極管的研究[D];復(fù)旦大學(xué);2011年
7 宋淑梅;多層結(jié)構(gòu)透明導(dǎo)電氧化物薄膜的制備及特性研究[D];山東大學(xué);2010年
8 高倩;大面積氧化物薄膜材料的微納結(jié)構(gòu)可控制備與性能調(diào)控技術(shù)[D];浙江大學(xué);2014年
9 曹恩思;氧化物薄膜的磁性及磁電耦合研究[D];山東大學(xué);2012年
10 譚娜;Er/Yb共摻氧化物薄膜的光致熒光特性、結(jié)構(gòu)特征及相關(guān)優(yōu)化理論分析[D];大連理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 代超;鈣鈦礦氧化物薄膜中的應(yīng)力釋放機(jī)制研究[D];電子科技大學(xué);2012年
2 趙靜;銅及其氧化物薄膜的磁控濺射法制備及對(duì)AP的催化性能研究[D];南京理工大學(xué);2012年
3 張佳旗;脈沖激光沉積制備氧化物薄膜及其光電性質(zhì)的研究[D];吉林大學(xué);2013年
4 劉宗宇;Mn的氧化物薄膜的制備與表征[D];大連交通大學(xué);2013年
5 王越;ZnO基透明導(dǎo)電氧化物薄膜的光、電和力學(xué)性能研究[D];天津師范大學(xué);2013年
6 馮佳涵;PMMA介質(zhì)層銦鋅氧化物薄膜晶體管的制備與研究[D];復(fù)旦大學(xué);2011年
7 吳臣國(guó);新型ZnO基透明導(dǎo)電氧化物薄膜的研究[D];復(fù)旦大學(xué);2010年
8 周俊;非晶銦鋅氧化物薄膜晶體管的研究[D];復(fù)旦大學(xué);2010年
9 李宇維;利用磁控濺射制備銦鎵鋅氧化物薄膜晶體管的研究[D];北京交通大學(xué);2012年
10 楊薇;新型復(fù)合TCO透明導(dǎo)電薄膜[D];遼寧科技大學(xué);2012年
,本文編號(hào):1953732
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1953732.html