基于廣義Hamilton原理的電磁渦流阻尼減振系統(tǒng)建模方法研究
本文選題:電磁渦流阻尼 + Hamilton體系; 參考:《合肥工業(yè)大學(xué)》2014年碩士論文
【摘要】:電磁渦流阻尼是當(dāng)今電磁研究的前沿性課題,涉及到諸多學(xué)科和眾多復(fù)雜的問(wèn)題。電磁渦流阻尼器是電磁渦流阻尼技術(shù)的一種應(yīng)用,近十幾年來(lái)被人們廣泛關(guān)注并應(yīng)用到減振系統(tǒng)中。然而不同的應(yīng)用場(chǎng)合,阻尼器需要滿(mǎn)足的要求各不相同,如結(jié)構(gòu)尺寸、阻尼力大小等參數(shù)條件。若要提高電磁渦流阻尼器的減振性能,必須弄清阻尼特性與減振機(jī)理,定量分析阻尼器各參數(shù)之間的相互影響,精確求解電磁渦流阻尼問(wèn)題,F(xiàn)有的求解方法計(jì)算復(fù)雜,難以得到電磁渦流阻尼問(wèn)題的精確解。因此,,需要建立新的模型來(lái)求解電磁渦流阻尼減振系統(tǒng)。 自然界中一切物理過(guò)程,不管是經(jīng)典的、相對(duì)的還是量子的均可以表示為Hamilton形式。Hamilton體系是遍在的、普適的,可以利用廣義Hamilton原理來(lái)建立電磁渦流阻尼減振系統(tǒng)的求解模型。本文將系統(tǒng)問(wèn)題分為渦流單元與運(yùn)動(dòng)單元兩個(gè)部分求解。通過(guò)分析力學(xué)系統(tǒng)與電磁渦流阻尼減振系統(tǒng)各參數(shù)的類(lèi)比,將Hamilton體系引入電磁渦流阻尼系統(tǒng)中。根據(jù)分析力學(xué)中非保守系統(tǒng)的Hamilton正則方程的理論體系,選擇了合適的對(duì)偶變量;整體考慮系統(tǒng)的能量轉(zhuǎn)換與能量耗散,從能量的角度建立了Hamilton函數(shù),將問(wèn)題轉(zhuǎn)化為Hamilton正則方程的求解。研究了利用辛算法和非辛算法求解渦流單元正則方程,得到了方程的離散格式,并引入了修正的磁矢量對(duì)渦流單元Hamilton模型進(jìn)行優(yōu)化。基于廣義Hamilton原理建立電磁渦流阻尼減振系統(tǒng)的求解模型,一方面為電磁渦流阻尼問(wèn)題的求解提供了一個(gè)新的思路,另一方面也促進(jìn)了Hamilton理論體系在其他科研領(lǐng)域的推廣與應(yīng)用。
[Abstract]:Eddy current damping is a leading subject in electromagnetic research, which involves many disciplines and complex problems. Electromagnetic eddy current damper (EVD) is an application of Eddy current damping (EVD) technology, which has been widely paid attention to and applied to the vibration absorption system in the past ten years. However, in different applications, the damper needs different requirements, such as structural size, damping force and other parameters. In order to improve the damping performance of the eddy current damper, it is necessary to make clear the damping characteristics and damping mechanism, to quantitatively analyze the interaction between the parameters of the damper, and to accurately solve the electromagnetic eddy current damping problem. It is difficult to obtain the exact solution of the eddy current damping problem due to the complexity of the existing methods. Therefore, a new model is needed to solve the eddy current damping system. All physical processes in nature, whether classical, relative or quantum, can be expressed as Hamilton form. The Hamiltonian system is universal and universal. The solution model of electromagnetic eddy current damping system can be established by using the generalized Hamilton principle. In this paper, the system problem is divided into eddy current unit and motion unit. By analyzing the analogy between the mechanical system and the electromagnetic eddy current damping system, the Hamilton system is introduced into the electromagnetic eddy current damping system. According to the theoretical system of the Hamilton canonical equation of non-conservative systems in analytical mechanics, the proper dual variables are selected, and the Hamilton function is established from the view of energy, considering the energy conversion and energy dissipation of the system as a whole. The problem is transformed into the solution of Hamilton regular equation. The canonical equations of eddy current elements are solved by symplectic algorithm and non-symplectic algorithm. The discrete scheme of the equations is obtained, and the modified magnetic vector is introduced to optimize the Hamilton model of eddy current elements. Based on the generalized Hamilton principle, the solution model of the electromagnetic eddy current damping damping system is established. On the one hand, it provides a new idea for solving the electromagnetic eddy current damping problem, on the other hand, it also promotes the popularization and application of the Hamilton theory system in other fields of scientific research.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TB535.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄒貴平,唐立民;極坐標(biāo)系中彈性力學(xué)平面問(wèn)題的Hamilton正則方程及狀態(tài)空間有限元法[J];工程力學(xué);1993年01期
2 楊超君;王晶晶;顧紅偉;馬宏亮;蔣生發(fā);;鼠籠轉(zhuǎn)子磁力聯(lián)軸器空載氣隙磁場(chǎng)有限元分析[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
3 ;CONSTRUCTION OF HIGH ORDER SYMPLECTIC PRK METHODS[J];Journal of Computational Mathematics;1995年01期
4 李慧敏;閆如忠;;電磁輔助支承被動(dòng)阻尼減振與主動(dòng)阻尼減振的比較[J];機(jī)械強(qiáng)度;2007年04期
5 李俊峰,王照林,李鐵成;關(guān)于非保守力學(xué)系統(tǒng)的穩(wěn)定性[J];力學(xué)與實(shí)踐;1996年05期
6 郭力,楊軍,汪希平;用電磁阻尼器控制轉(zhuǎn)子振動(dòng)[J];磨床與磨削;1998年03期
7 謝德馨,宋志明,徐子宏;三維渦流計(jì)算中的矢量磁位與標(biāo)量電位[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);1989年02期
8 王有林;劉景林;;電磁阻尼器設(shè)計(jì)研究[J];西北工業(yè)大學(xué)學(xué)報(bào);2006年03期
9 吳瓊;黃志祥;吳先良;;基于高階辛算法求解Maxwell方程[J];系統(tǒng)工程與電子技術(shù);2006年03期
10 童水光,汪希萱;轉(zhuǎn)子-軸承系統(tǒng)中電磁阻尼器理論研究[J];振動(dòng)工程學(xué)報(bào);1992年01期
相關(guān)博士學(xué)位論文 前1條
1 唐有綺;軸向運(yùn)動(dòng)梁和面內(nèi)平動(dòng)板橫向振動(dòng)的建模與分析[D];上海大學(xué);2011年
本文編號(hào):1870293
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1870293.html