多通道噪聲測(cè)量的關(guān)鍵理論與應(yīng)用研究
本文選題:多通道噪聲測(cè)量 切入點(diǎn):自卷積檢測(cè) 出處:《湖南大學(xué)》2015年博士論文
【摘要】:噪聲是一種人們不希望聽(tīng)到的聲音,對(duì)人類的生活和健康產(chǎn)生巨大的影響,對(duì)動(dòng)物、儀器設(shè)備和建筑物等各方面也產(chǎn)生一定的影響。噪聲污染同水污染、大氣污染和廢物污染一起被看成是世界范圍內(nèi)的四個(gè)主要環(huán)境問(wèn)題。隨著社會(huì)經(jīng)濟(jì)的發(fā)展,噪聲污染問(wèn)題越來(lái)越突出,帶來(lái)了一系列的不良效應(yīng),影響社會(huì)的和諧穩(wěn)定發(fā)展。因此,開(kāi)展噪聲測(cè)量與分析技術(shù)的研究具有非常重要的意義?陀^而全面的噪聲測(cè)量與分析是認(rèn)識(shí)、判斷和處理各種噪聲問(wèn)題的重要手段。隨著科技的發(fā)展以及計(jì)算機(jī)技術(shù)水平的提高,傳統(tǒng)噪聲測(cè)量?jī)x器的功能和性能等發(fā)生了很大的變化,正向數(shù)字化、智能化、網(wǎng)絡(luò)化和虛擬化的方向發(fā)展。但是國(guó)內(nèi)外高性能噪聲測(cè)量?jī)x器和系統(tǒng)價(jià)格比較昂貴,而一般的噪聲測(cè)量?jī)x器和系統(tǒng)存在各種各樣的不足。本文采用理論推導(dǎo)、仿真分析和實(shí)驗(yàn)驗(yàn)證相結(jié)合的方法,擬設(shè)計(jì)和開(kāi)發(fā)多通道噪聲測(cè)量與分析系統(tǒng),并且針對(duì)多通道噪聲測(cè)量與分析相關(guān)的關(guān)鍵理論開(kāi)展深入的研究。主要有以下幾個(gè)方面:(1)在多通道噪聲測(cè)量過(guò)程中,由于各種因素的影響,尤其是背景噪聲的影響,每個(gè)通道測(cè)量得到的信號(hào)是不能直接被使用和處理的,否則會(huì)影響測(cè)量和評(píng)價(jià)的結(jié)果,因此針對(duì)噪聲測(cè)量的預(yù)處理問(wèn)題,研究周期信號(hào)的自卷積去噪理論,提出自卷積檢測(cè)法,擬用于去除噪聲測(cè)量中的背景噪聲,提高被處理信號(hào)的信噪比。對(duì)各種不同頻率成分的信號(hào)進(jìn)行仿真實(shí)驗(yàn)。(2)在多通道噪聲測(cè)量過(guò)程中,由于聲音無(wú)處不在,所以傳聲器接收到的信號(hào)一般是多個(gè)噪聲源信號(hào)的混合,而如果要測(cè)量單個(gè)噪聲源信號(hào),則可以先對(duì)混合多噪聲源進(jìn)行分離。針對(duì)混響環(huán)境中多個(gè)噪聲源同時(shí)存在時(shí)的聲源分離和單個(gè)噪聲源實(shí)際輻射噪聲的測(cè)量問(wèn)題,研究基于時(shí)間反轉(zhuǎn)技術(shù)(Time reversal technique,TRT)的聲源分離和測(cè)量方法,并在MATLAB環(huán)境中對(duì)混響室內(nèi)的二維和三維聲場(chǎng)進(jìn)行建模仿真,討論不同的聲場(chǎng)參數(shù),如聲源位置、聲源類型、麥克風(fēng)陣列布局、混響和通道噪聲對(duì)算法性能的影響。(3)在多通道噪聲測(cè)量與分析中,有些應(yīng)用場(chǎng)合需要對(duì)每個(gè)通道測(cè)量的信號(hào)進(jìn)行頻譜分析,分析噪聲的頻率成分或頻譜特征。由于快速傅里葉變換(Fast Fourier transform,FFT)算法本身的缺陷,對(duì)頻譜特征的提取需要進(jìn)行離散頻譜校正,如估計(jì)質(zhì)心頻率。針對(duì)傳統(tǒng)的離散頻譜校正方法的不足,研究基于譜質(zhì)心(Spectral centroid,SC)的聲信號(hào)頻譜校正方法。討論SC應(yīng)用于單頻信號(hào)和多頻信號(hào)的頻譜校正原理,尤其針對(duì)常見(jiàn)的聲信號(hào)估計(jì)寬頻和倍頻程的SC及質(zhì)心頻率,并且討論在背景噪聲下SC的變化。(4)由于在多通道噪聲測(cè)量與分析系統(tǒng)中,每個(gè)通道測(cè)量一路噪聲信號(hào),且每個(gè)通道的數(shù)據(jù)是獨(dú)立處理和分析的,所以研究單通道噪聲測(cè)量數(shù)據(jù)的后處理方法仍然非常重要。針對(duì)單通道噪聲測(cè)量數(shù)據(jù)的信息融合和擬合問(wèn)題,提出基于信息量和最小條件熵參數(shù)估計(jì)兩種信息融合方法以及基于互信息的數(shù)據(jù)擬合辨識(shí)方法。對(duì)于信息量融合方法,首先利用最大熵方法(Maximum entropy method,MEM)估計(jì)測(cè)量樣本的概率分布,再根據(jù)每個(gè)樣本的自信息量與樣本總體信息熵的比值對(duì)樣本數(shù)據(jù)進(jìn)行融合;對(duì)于最小條件熵參數(shù)估計(jì)融合方法,根據(jù)觀測(cè)樣本的條件概率密度函數(shù)構(gòu)建觀測(cè)總體條件信息熵,最小化該條件信息熵,求解無(wú)約束極值問(wèn)題即可得到最優(yōu)結(jié)果;對(duì)于互信息擬合辨識(shí)方法,將數(shù)據(jù)擬合的過(guò)程看作是一個(gè)通信過(guò)程,根據(jù)信息通信的信道模型構(gòu)建數(shù)據(jù)擬合模型,再根據(jù)擬合數(shù)據(jù)、擬合曲線和擬合誤差三者的信息熵求解擬合模型的互信息,選取互信息最大的曲線作為擬合曲線。(5)結(jié)合多通道噪聲測(cè)量與分析系統(tǒng)的需求和性能指標(biāo),以計(jì)算機(jī)為信息處理核心,結(jié)合虛擬儀器、數(shù)據(jù)庫(kù)、高速數(shù)據(jù)采集卡和數(shù)字信號(hào)處理等多種應(yīng)用技術(shù)設(shè)計(jì)開(kāi)發(fā)一款多通道噪聲測(cè)量與分析系統(tǒng),擬達(dá)到通道多、功能強(qiáng)、精度高、速度快、價(jià)格低等性能指標(biāo),詳細(xì)給出每個(gè)軟件模塊的設(shè)計(jì)原理和程序。
[Abstract]:Noise is a kind of unwanted sound, have a tremendous impact on human life and health of the animal, the equipment and buildings also have a certain impact. Noise pollution and water pollution, air pollution and waste pollution is regarded as the world within the scope of the four major environmental problems. With the development of social economy, the problem of noise pollution is becoming more and more prominent, brought a series of negative effects, affect social harmony and stability and development. Therefore, it is very important to study the development of noise measurement and analysis technology. Noise measurement and analysis of objective and comprehensive understanding, an important means to judge and deal with various noise problems. With the development of technology and improve the level of computer technology, has undergone great changes, the traditional noise measuring instrument function and performance are digital, intelligent, network The virtual and the direction of development. But the domestic and foreign high performance noise measuring instruments and systems are expensive, lack of noise measuring instruments and systems in general there are various. This paper uses the method of theoretical derivation, simulation analysis and experimental validation of the combination, to the design and development of multi channel noise measurement and analysis system, and for deep research of the key theory and related analysis of multi channel noise measurement. Mainly in the following aspects: (1) in multi channel noise in the measurement process, due to various factors, especially the influence of background noise, signal of each channel measurement is not to be used directly, otherwise it will affect the measurement and the results of the evaluation, so the pretreatment problem of noise measurement, self convolution denoising theory of periodic signal, the self convolution method, to be used for removing noise measurement In the background noise, improve signal processing by SNR. Signals of different frequencies is simulated. (2) in multi channel noise in the measurement process, the sound is everywhere, so signal received by the microphones are generally mixed multiple noise source signals, and if you want to measure a single noise source signal you can first, separating the mixed noise sources. To solve the problem of measuring the sound source separation and single noise source of multiple noise sources in reverberant environments exist at the same time the actual radiation noise, the research based on time reversal technique (Time reversal technique, TRT) of the sound source separation and measurement method, and two-dimensional in MATLAB environment the reverberation chamber and the three-dimensional acoustic modeling and simulation, discuss the acoustic parameters, such as the position of the sound source, the sound source type, microphone array layout, and the effects of reverberation channel noise on the performance of the algorithm in (3). Measurement and analysis of noise in the channel, some applications need to analysis the signal spectrum of each channel measurement and analysis of noise frequency components or spectrum characteristics. Because of the fast Fourier transform (Fast Fourier transform FFT) algorithm to extract the defect itself, the need for spectrum correction of discrete spectrum estimation, such as centroid frequency for. Lack of correction method for discrete spectrum of the traditional research based on spectral centroid (Spectral centroid, SC) of the sound signal spectrum correction method. Discuss the correction principle of spectrum of SC application in single frequency and multi frequency signal, especially for SC and centroid frequency broadband and octave estimation of acoustic signals in common, and discuss the changes in the background the noise of SC. (4) due to the multi channel noise measurement and analysis system, each channel measuring a noise signal, and each channel is independent of the data processing and analysis So, study on single channel noise measurement data postprocessing method is still very important. Based on the information fusion of single channel noise measurement and data fitting problem, based on the two kinds of information fusion method of information quantity and the minimum conditional entropy of parameter estimation and identification data fitting method based on mutual information. The information fusion method based on the maximum. Entropy method (Maximum entropy method, MEM) to estimate the probability distribution of the measured samples, then according to the ratio of each sample from the amount of information and the sample information entropy fusion of sample data; the small conditional entropy fusion method for parameter estimation, according to the observation samples of the conditional probability density function to construct general observation conditional information entropy, minimizing the conditional information entropy, solve the unconstrained extremum problem can get best results; mutual information for fitting the identification method, the process of data fitting at As a communication process, according to the construction of data fitting model of channel model of information communication, according to the fitting data, mutual information entropy fitting model fitting curve and the fitting error of the three, select the maximum mutual information as curve fitting curve. (5) according to the requirements and performance index of multi channel noise measurement and analysis the system, based on computer information processing core, combined with virtual instrument, database, the development of a multi channel noise measurement and analysis system of high speed data acquisition card and a variety of applications such as digital signal processing technology to design, to multi-channel, strong function, high precision, fast speed, low price performance index, design principle and procedure details are given of each software module.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高慧,周篤強(qiáng),牛聰敏,李明鋒,程明昆;多路噪聲測(cè)量系統(tǒng)的研制[J];應(yīng)用聲學(xué);2000年02期
2 李建生,肖英;多點(diǎn)噪聲測(cè)量系統(tǒng)的實(shí)現(xiàn)[J];井岡山醫(yī)專學(xué)報(bào);2002年06期
3 章少坪;家用電器及類似用途器具噪聲測(cè)量結(jié)果不確定度評(píng)估[J];現(xiàn)代測(cè)量與實(shí)驗(yàn)室管理;2004年01期
4 王玉珍;付永杰;李莉;;噪聲測(cè)量技術(shù)的研究及分析[J];電子測(cè)量與儀器學(xué)報(bào);2008年S2期
5 陳凡;;一種數(shù)字式噪聲測(cè)量系統(tǒng)的設(shè)計(jì)[J];機(jī)床與液壓;2011年02期
6 王安錫;船上噪聲測(cè)量綜述(上)[J];交通環(huán)保;1983年03期
7 王安錫;船上噪聲測(cè)量綜述(下)[J];交通環(huán)保;1983年04期
8 鄭荃;;驅(qū)動(dòng)微電機(jī)噪聲的降低及噪聲測(cè)量技術(shù)(下)[J];微特電機(jī);1984年03期
9 A·施密特;馬健平;;離心泵噪聲測(cè)量試驗(yàn)室[J];國(guó)外艦船技術(shù)(特輔機(jī)電設(shè)備類);1980年09期
10 沈(山豪);;飛機(jī)噪聲測(cè)量[J];電聲技術(shù);1985年06期
相關(guān)會(huì)議論文 前9條
1 陳守虎;吳國(guó)清;馬力;;噪聲測(cè)量中利用目標(biāo)譜線進(jìn)行精確波束形成的研究[A];中國(guó)聲學(xué)學(xué)會(huì)2006年全國(guó)聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
2 陳曉娟;趙睿;吳勇峰;;低頻噪聲測(cè)量方法的研究[A];中國(guó)儀器儀表學(xué)會(huì)第九屆青年學(xué)術(shù)會(huì)議論文集[C];2007年
3 張建軍;王s,
本文編號(hào):1674074
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1674074.html