巴謝河流域滑坡易發(fā)性評價
本文關(guān)鍵詞: 巴謝河流域 滑坡 易發(fā)性評價 出處:《蘭州大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:巴謝河流域作為黃土高原隴西地區(qū)臨夏盆地滑坡密集發(fā)育的典型區(qū),區(qū)內(nèi)滑坡分布廣泛、活動頻繁,威脅著當?shù)厝嗣竦纳敭a(chǎn)安全。為有效地制定區(qū)域滑坡災(zāi)害宏觀防治政策,就需要從區(qū)域上對滑坡災(zāi)害進行易發(fā)性區(qū)劃,GIS的運用極大地提高了滑坡易發(fā)性評價的工作效率;谶b感解譯與野外調(diào)查,查明了巴謝河流域滑坡的位置、數(shù)量、分布及規(guī)模等,總結(jié)了流域內(nèi)滑坡的類型及分布特征。通過遙感、地形與地質(zhì)等多源數(shù)據(jù)集成,實現(xiàn)滑坡影響因素的提取,選用斜坡單元作為評價單元,定量地分析了滑坡與其影響因素間的關(guān)系。從全區(qū)249處滑坡中隨機選擇70%的樣本數(shù)據(jù)用于構(gòu)建EBF、頻率比及確定性系數(shù)3種評估模型,而剩下30%的滑坡點用于模型的驗證,繪制出滑坡易發(fā)性分區(qū)圖。同時利用成功率曲線與預(yù)測率曲線對評價結(jié)果進行精度檢驗,探討了模型的可信程度。獲得的主要研究成果如下:(1)流域內(nèi)滑坡規(guī)模以大、中型為主,厚度以中、深層居多,沿河流溝谷線性展布;河流兩岸滑坡呈不對稱發(fā)育,且在其兩岸溝口處多發(fā)育大型滑坡;在黃土厚度大的中、下游地段多分布有大型、深層滑坡;同時顯現(xiàn)出同一地點復(fù)活性較強的特性;滑坡在時間上具有多期性,后期發(fā)生的滑坡常改造前期形成的滑坡。(2)滑坡分布與地形地貌關(guān)系密切,高程2000~2200m、坡度15°~30°、起伏度100~200m、陽坡坡向、切割深度50~100m及溝谷密度1~2.5km/km2的范圍內(nèi),滑坡尤為發(fā)育;滑坡與地層巖性、植被、人類活動等有較好的對應(yīng)關(guān)系,其中巖性為馬蘭黃土及泥巖、NDVI在0.2~0.3與距離道路600m的范圍內(nèi)滑坡易于發(fā)生。(3)把區(qū)內(nèi)滑坡易發(fā)性程度分為5個級別:極低易發(fā)、低易發(fā)、中易發(fā)、高易發(fā)、極高易發(fā)。通過計算得到,EBF模型、CF模型、FR模型成功率曲線下方面積分別為0.8038、0.7924、0.8088,預(yù)測率曲線下方面積分別為0.8056、0.7922、0.7989。可以看出,3種模型得到的滑坡易發(fā)性區(qū)劃圖對滑坡空間分布的反映與預(yù)測較為相似,曲線下方的面積都很接近,但綜合考量成功率與預(yù)測率來看,EBF模型的評價結(jié)果要略優(yōu)于FR模型、CF模型。
[Abstract]:As a typical area of intensive development of landslides in the Linxia basin of Longxi region of the Loess Plateau, the Basie River Basin has a wide distribution of landslides and frequent activities. It threatens the safety of local people's life and property. In order to effectively formulate the macro-control policy of regional landslide disaster, it is necessary to regionalize the vulnerability of landslide disaster. The application of GIS has greatly improved the work efficiency of landslide vulnerability evaluation. Based on remote sensing interpretation and field investigation, the location, quantity, distribution and scale of landslide in Basei River Basin have been found out. The types and distribution characteristics of landslide in the basin are summarized. Through the integration of multi-source data such as remote sensing, topography and geology, the extraction of landslide influencing factors is realized, and the slope unit is selected as the evaluation unit. The relationship between landslide and its influencing factors was analyzed quantitatively. 70% samples were randomly selected from 249 landslides in the whole area to construct three evaluation models of EBF, frequency ratio and deterministic coefficient. The remaining 30% landslide points are used to verify the model and draw the landslide susceptibility zoning map. At the same time, the accuracy of the evaluation results is verified by using the success rate curve and the prediction rate curve. The main results obtained are as follows: the scale of landslide in the basin is large and medium, the thickness is medium and deep, and the distribution is linear along the river valley; The landslide on both sides of the river develops asymmetrically, and large landslide is developed at the gully of the river. In the middle and lower reaches of loess, there are large and deep landslides. At the same time, it showed the characteristics of strong resurrection in the same place. Landslide has multi-period character in time. The landslide distribution formed in the early stage of landslide reconstruction is closely related to landform and landform. The elevation is 2000 ~ 2200mand the slope is 15 擄~ 30 擄. The landslide is especially developed in the range of 100 ~ 200m of fluctuation, 50 ~ 100m of cutting depth and 1 ~ 2.5km / km ~ 2 of valley density. Landslide has a good relationship with stratigraphic lithology, vegetation, human activities and so on, among which the lithology is Ma Lan loess and mudstone. NDVI is within the range of 0.2m and 600m away from the road.) the susceptibility of landslide in this area is divided into five grades: very low, low, moderate and high. The area under the success rate curve of CF / FR model is 0.8038 / 0.7924 / 0.8088, respectively. The area under the forecast rate curve is 0.8056U 0.7922g 0.79899.It can be seen. The spatial distribution of landslide obtained from the three models is similar to that of prediction, and the area below the curve is very similar, but considering the success rate and prediction rate. The evaluation results of EBF model are slightly better than that of FR model / CF model.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P642.22
【參考文獻】
相關(guān)期刊論文 前10條
1 袁湘秦;趙法鎖;陳新建;程曉輝;姚翔龍;;陜西省綏德縣地質(zhì)災(zāi)害易發(fā)性區(qū)劃[J];災(zāi)害學(xué);2017年01期
2 安凱強;牛瑞卿;;信息量支持下SVM模型滑坡災(zāi)害易發(fā)性評價[J];長江科學(xué)院院報;2016年08期
3 武雪玲;沈少青;牛瑞卿;;GIS支持下應(yīng)用PSO-SVM模型預(yù)測滑坡易發(fā)性[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2016年05期
4 薛強;張茂省;李林;;基于斜坡單元與信息量法結(jié)合的寶塔區(qū)黃土滑坡易發(fā)性評價[J];地質(zhì)通報;2015年11期
5 唐川;馬國超;;基于地貌單元的小區(qū)域地質(zhì)災(zāi)害易發(fā)性分區(qū)方法研究[J];地理科學(xué);2015年01期
6 王佳佳;殷坤龍;肖莉麗;;基于GIS和信息量的滑坡災(zāi)害易發(fā)性評價——以三峽庫區(qū)萬州區(qū)為例[J];巖石力學(xué)與工程學(xué)報;2014年04期
7 楊巖巖;劉連友;;無定河流域溝谷密度特征及其影響因素分析[J];干旱區(qū)資源與環(huán)境;2014年03期
8 武雪玲;任福;牛瑞卿;彭令;;斜坡單元支持下的滑坡易發(fā)性評價支持向量機模型[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2013年12期
9 王佳佳;殷坤龍;杜娟;王軼力;;基于GIS考慮準動態(tài)濕度指數(shù)的滑坡危險性預(yù)測水文 力學(xué)耦合模型研究[J];巖石力學(xué)與工程學(xué)報;2013年S2期
10 張帆宇;劉高;諶文武;沈云霞;韓文峰;;基于多變量統(tǒng)計分析的大型滑坡敏感性評價:以汶川地震影響的隴南地區(qū)為例[J];中南大學(xué)學(xué)報(自然科學(xué)版);2012年09期
相關(guān)博士學(xué)位論文 前2條
1 劉長春;三峽庫區(qū)萬州城區(qū)滑坡災(zāi)害風(fēng)險評價[D];中國地質(zhì)大學(xué);2014年
2 邱海軍;區(qū)域滑坡崩塌地質(zhì)災(zāi)害特征分析及其易發(fā)性和危險性評價研究[D];西北大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 顏閣;華池縣滑坡易發(fā)性制圖[D];蘭州大學(xué);2016年
,本文編號:1484851
本文鏈接:http://sikaile.net/guanlilunwen/gongchengguanli/1484851.html