天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

脈沖型地震下考慮支座位移需求的減震—隔震混合控制體系抗震性能研究

發(fā)布時(shí)間:2018-11-28 08:13
【摘要】:在過(guò)去的二十年里,隔震技術(shù)已經(jīng)被證明是一種非常有效的抗震技術(shù),在民用建筑、橋梁以及工業(yè)建筑中得到了廣泛的應(yīng)用;A(chǔ)隔震技術(shù)是通過(guò)在結(jié)構(gòu)底部安裝具有較低抗側(cè)剛度的隔震支座,使結(jié)構(gòu)基本自振頻率遠(yuǎn)離地震動(dòng)的高頻成分,從而減小上部結(jié)構(gòu)地震作用的一種被動(dòng)抗震技術(shù)。由此可見,對(duì)于能量集中分布在中、高頻段的遠(yuǎn)場(chǎng)地震動(dòng),基礎(chǔ)隔震技術(shù)非常有效。但是,對(duì)于包含長(zhǎng)周期、大幅值以及高能量輸入頻率成分的脈沖型地震動(dòng),基礎(chǔ)隔震技術(shù)的有效性則值得商榷,F(xiàn)有的研究已經(jīng)表明,隔震支座在脈沖型地震作用下可能會(huì)發(fā)生屈曲、拉裂等破壞,影響上部結(jié)構(gòu)的安全。為此,本文圍繞脈沖型地震作用下,隔震支座的位移需求和分別采用調(diào)諧質(zhì)量阻尼器和粘滯阻尼器對(duì)隔震支座位移進(jìn)行控制的減震-隔震混合控制體系的動(dòng)力響應(yīng)、能量耗散機(jī)理以及抗震性能展開了以下幾方面的研究工作: (1)對(duì)既有關(guān)于近斷層區(qū)域劃分以及脈沖型地震動(dòng)特征的研究工作進(jìn)行了總結(jié),在此基礎(chǔ)上建立了脈沖型地震動(dòng)的選取準(zhǔn)則,利用該選波準(zhǔn)則從PEER中選取了本文后續(xù)工作所需的脈沖型地震記錄,通過(guò)對(duì)脈沖型地震記錄的功率譜進(jìn)行分析,研究了其頻譜特征;對(duì)現(xiàn)有普通地震動(dòng)的合成方法以及速度脈沖的數(shù)學(xué)模型進(jìn)行了總結(jié),在此基礎(chǔ)上通過(guò)對(duì)目標(biāo)響應(yīng)譜進(jìn)行擬合得到了脈沖型地震動(dòng)的高頻分量,利用He-Agrawal模型合成速度脈沖分量,將兩者進(jìn)行疊加得到包含高頻分量和低頻分量的合成脈沖型地震動(dòng),通過(guò)對(duì)合成地震動(dòng)的功率譜進(jìn)行分析,探討了該合成方法的可行性。 (2)對(duì)脈沖型地震作用下隔震支座非彈性位移需求的估算方法進(jìn)行了研究。建立了隔震結(jié)構(gòu)彈性位移需求譜和等強(qiáng)度位移需求譜的相關(guān)方程,運(yùn)用MATLAB進(jìn)行編程和求解得到了隔震結(jié)構(gòu)的彈性位移需求譜、等強(qiáng)度位移需求譜和等強(qiáng)度位移比譜;對(duì)彈性位移需求譜和等強(qiáng)度位移比譜的譜形特征進(jìn)行了分析,利用曲線擬合方法得到了彈性位移需求譜和等強(qiáng)度位移比譜的計(jì)算公式,通過(guò)與真實(shí)地震記錄的彈性位移需求譜和等強(qiáng)度位移比譜進(jìn)行對(duì)比,探討了本文所建立計(jì)算公式的合理性;最后,將彈性位移需求譜和等強(qiáng)度位移比譜的計(jì)算公式進(jìn)行聯(lián)立,得到了等強(qiáng)度位移需求譜的計(jì)算公式,利用該公式可以快速地估算出隔震支座在脈沖型地震作用下的非彈性位移需求。 (3)分別研究了調(diào)諧質(zhì)量阻尼器和粘滯阻尼器的安裝對(duì)隔震支座以及上部結(jié)構(gòu)地震響應(yīng)的影響。建立了LRB結(jié)構(gòu)、TMD-LRB體系以及Dsup-LRB體系的非線性運(yùn)動(dòng)方程,運(yùn)用MATLAB編程求解了結(jié)構(gòu)在脈沖型地震作用下的動(dòng)力響應(yīng),通過(guò)與LRB結(jié)構(gòu)進(jìn)行對(duì)比,分別研究了調(diào)諧質(zhì)量阻尼器和粘滯阻尼器的安裝對(duì)隔震支座位移響應(yīng)和上部結(jié)構(gòu)層間位移響應(yīng)和加速度響應(yīng)的影響;進(jìn)一步研究了速度脈沖周期、支座屈服力、屈服后與屈服前的剛度比、調(diào)諧質(zhì)量比、調(diào)諧頻率比以及由粘滯阻尼器產(chǎn)生的附加阻尼比對(duì)隔震支座和上部結(jié)構(gòu)位移響應(yīng)的影響;最后,建立了LRB結(jié)構(gòu)、TMD-LRB體系以及Dsup-LRB體系的能量平衡方程,運(yùn)用MATLAB編程求解了結(jié)構(gòu)的能量響應(yīng),通過(guò)對(duì)地震動(dòng)輸入能、結(jié)構(gòu)阻尼耗能以及隔震支座滯回耗能的對(duì)比分析,從能量耗散的角度研究了調(diào)諧質(zhì)量阻尼器和粘滯阻尼器的安裝能夠削弱結(jié)構(gòu)地震響應(yīng)的原因。 (4)研究了粘滯阻尼器的安裝對(duì)上部結(jié)構(gòu)和隔震支座抗震性能的影響。對(duì)LRB結(jié)構(gòu)和Dsup-LRB體系進(jìn)行非線性增量動(dòng)力分析,得到了上部結(jié)構(gòu)和隔震支座的IDA曲線,對(duì)單條IDA曲線和多條IDA曲線的特征進(jìn)行了分析,經(jīng)過(guò)統(tǒng)計(jì)得到上部結(jié)構(gòu)和隔震支座的16%、50%和84%分位IDA曲線,從統(tǒng)計(jì)的角度對(duì)兩者的抗震性能進(jìn)行了分析;進(jìn)一步對(duì)LRB結(jié)構(gòu)和Dsup-LRB體系進(jìn)行了地震易損性分析,得到了上部結(jié)構(gòu)和隔震支座在不同極限狀態(tài)下的地震易損性曲線,從概率的角度對(duì)兩者的抗震性能進(jìn)行了評(píng)估。 (5)以串聯(lián)隔震體系振動(dòng)臺(tái)試驗(yàn)為基礎(chǔ),對(duì)隔震支座的位移需求進(jìn)行了動(dòng)力試驗(yàn)研究。通過(guò)對(duì)不同強(qiáng)度地震作用下隔震支座的位移響應(yīng)進(jìn)行對(duì)比分析,研究了地震動(dòng)強(qiáng)度對(duì)隔震支座位移響應(yīng)的影響:通過(guò)與遠(yuǎn)場(chǎng)地震進(jìn)行對(duì)比,研究了脈沖型地震動(dòng)對(duì)隔震支座位移響應(yīng)的影響;通過(guò)與LRB結(jié)構(gòu)進(jìn)行對(duì)比,研究了粘滯阻尼器的安裝對(duì)隔震支座位移需求的影響,為數(shù)值分析結(jié)果提供了試驗(yàn)論據(jù)。
[Abstract]:Over the past two decades, the seismic technology has been proved to be a very effective anti-seismic technique, and has been widely used in civil buildings, bridges and industrial buildings. The basic shock-proof technology is a passive anti-seismic technique which can reduce the seismic effect of the upper structure by installing a shock-proof support with lower anti-lateral rigidity at the bottom of the structure, so that the structure is basically self-vibration frequency away from the ground vibration high-frequency component. It can be seen that the basic seismic isolation technique is very effective in the middle and high frequency range of the energy concentration distribution. However, for the pulse-type ground motion, which contains the long period, the amplitude value and the high energy input frequency component, the effectiveness of the basic seismic isolation technique is discussed. The existing research has shown that the shock-proof support can be damaged by buckling and cracking under the action of a pulse-type earthquake, and the safety of the upper structure is affected. In this paper, the dynamic response of the shock-shock hybrid control system, which is controlled by the displacement of the seismic bearing, the displacement demand of the seismic bearing and the displacement of the shock-proof support by the tuned mass damper and the viscous damper, is used in this paper. The energy dissipation mechanism and the anti-seismic performance are studied in the following aspects: (1) The research work on the classification of the near-fault region and the characteristics of the pulse-type ground motion is summarized, and the selection of the pulse-type ground motion is established. In this paper, the pulse-type seismic records required for the follow-up work of the paper are selected from the PEER by using the selected wave criterion, and the power spectrum of the pulse-type seismic record is analyzed, the spectral characteristics of the pulse-type seismic records are studied, and the synthesis method and the mathematical model of the speed pulse of the conventional vibration are combined. The high-frequency component of the pulse-type ground motion is obtained by fitting the target response spectrum, and the high-frequency component of the high-frequency component and the low-frequency component are combined to obtain a composite pulse-type earthquake with high-frequency components and low-frequency components by using the He-Aggrawal model to synthesize the velocity pulse component. In this paper, the power spectrum of the synthetic ground is analyzed, and the feasibility of this method is discussed. (2) The estimation method of the non-elastic displacement demand of the seismic isolation support under the action of the impulse type earthquake In this paper, the correlation equations of the elastic displacement demand spectrum and the isointensity displacement demand spectrum of the shock-proof structure are established, and the elastic displacement demand spectrum, the equal-intensity displacement demand spectrum and the equal-intensity position of the seismic isolation structure are obtained by using the MATLAB to program and solve the problem. The spectral characteristics of the elastic displacement demand spectrum and the isointensity displacement ratio spectrum are analyzed, and the calculation formulas of the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum are obtained by using the curve fitting method, and the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum are obtained through the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum of the real earthquake record. In this paper, the rationality of the calculation formula established in this paper is discussed in this paper. Finally, the calculation formula of the elastic displacement demand spectrum and the equivalent intensity displacement ratio spectrum is combined, and the isointensity displacement demand spectrum is obtained. The formula can be used to estimate the non-elastic position of the shock-proof support under the action of the pulse-type earthquake. (3) The installation of tuned mass dampers and viscous dampers on the seismic bearing and the upper structural earthquake are studied respectively. The nonlinear motion equation of the LRB structure, the TMD-LRB system and the Dup-LRB system is established, and the dynamic response of the structure under the action of the pulse-type earthquake is solved by using the MATLAB programming. The effects of the installation of the tuned mass damper and the viscous damper on the displacement response and the response of the displacement of the upper structural layer and the response of the acceleration are studied. The ratio of the rate pulse period, the bearing yield force, the yield and the stiffness ratio before yielding is further studied. The influence of the tuning mass ratio, the tuning frequency ratio and the additional damping ratio generated by the viscous damper on the displacement response of the spacer and the upper structure is discussed. Finally, the energy balance equation of the LRB structure, the TMD-LRB system and the Dup-LRB system is established, and the structure is solved by using MATLAB. In response to the energy dissipation, the structure earthquake can be weakened by comparing the input energy of the ground, the energy dissipation of the structure, and the hysteretic energy dissipation of the spacer. The reason for the response. (4) The installation of the viscous damper on the upper structure and the spacer support The nonlinear incremental dynamic analysis of the LRB structure and the Dup-LRB system is carried out, and the IDA curves of the upper structure and the shock-proof support are obtained, and the characteristics of the single IDA curve and the multiple IDA curves are analyzed, and the 16%, 50% and 84% of the upper structure and the shock-barrier support are obtained through statistics. The seismic performance of both the LRB structure and the Dup-LRB system is analyzed, and the upper structure and the shock-proof support are obtained in different limit states. The Seismic Vulnerability Curve and the Anti-seismic of the Two from the Perspective of Probability The performance is evaluated. (5) The displacement demand of the seismic isolation support is based on the vibration table test of the series seismic isolation system. In this paper, the dynamic test is carried out. The influence of the ground vibration intensity on the displacement response of the seismic bearing is studied by comparing the displacement response of the seismic bearing with different strength. The influence of the mounting of the viscous damper on the displacement demand of the spacer is studied by comparing with the LRB structure, and the numerical analysis is given.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU352.11

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 江輝;慎丹;倪永軍;朱f^;楊慶山;;近斷層地震地面運(yùn)動(dòng)峰值衰減規(guī)律研究[J];北京交通大學(xué)學(xué)報(bào);2011年04期

2 郭恩;周錫元;彭凌云;趙作周;;近斷層地震動(dòng)記錄中速度大脈沖及其影響范圍[J];北京工業(yè)大學(xué)學(xué)報(bào);2012年02期

3 楊迪雄,李剛,程耿東;近斷層脈沖型地震動(dòng)作用下隔震結(jié)構(gòu)地震反應(yīng)分析[J];地震工程與工程振動(dòng);2005年02期

4 劉啟方;袁一凡;金星;丁海平;;近斷層地震動(dòng)的基本特征[J];地震工程與工程振動(dòng);2006年01期

5 李明;謝禮立;翟長(zhǎng)海;楊永強(qiáng);;近斷層地震動(dòng)區(qū)域的劃分[J];地震工程與工程振動(dòng);2009年05期

6 楊迪雄;王偉;;近斷層地震動(dòng)的頻譜周期參數(shù)和非平穩(wěn)特征分析[J];地震工程與工程振動(dòng);2009年05期

7 汪夢(mèng)甫;汪幟輝;劉飛飛;;增量動(dòng)力彈塑性分析方法的改進(jìn)及其應(yīng)用[J];地震工程與工程振動(dòng);2012年01期

8 李新樂(lè);竇慧娟;王豐;;近斷層長(zhǎng)周期地震動(dòng)前向性效應(yīng)對(duì)峰值影響研究[J];大連民族學(xué)院學(xué)報(bào);2012年03期

9 王海云;謝禮立;;近斷層地震動(dòng)模擬現(xiàn)狀[J];地球科學(xué)進(jìn)展;2008年10期

10 徐龍軍;謝禮立;;集集地震近斷層地震動(dòng)頻譜特性[J];地震學(xué)報(bào);2005年06期



本文編號(hào):2362314

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2362314.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d1d93***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com