天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

FRP-鋼板復(fù)合材料基本力學(xué)性能和耐久性能研究

發(fā)布時(shí)間:2018-09-17 08:14
【摘要】:纖維增強(qiáng)聚合物(Fiber Reinforced Polymer,簡(jiǎn)稱FRP)具有輕質(zhì)、高強(qiáng)等優(yōu)點(diǎn)被廣泛應(yīng)用于結(jié)構(gòu)的補(bǔ)強(qiáng)加固。但是,FRP加固后的結(jié)構(gòu)脆性性能顯著,不利于結(jié)構(gòu)抗震。本文結(jié)合國(guó)家自然科學(xué)基金項(xiàng)目(51108355)和湖北省自然科學(xué)基金項(xiàng)目(2011CDB269),提出了一種新型復(fù)合材料,即采用FRP與鋼板混雜鋪設(shè)形成FRP-鋼板復(fù)合材料。這種新型復(fù)合材料可以充分發(fā)揮FRP與鋼板力學(xué)性能的互補(bǔ)性,顯著地改善單一加固材料的強(qiáng)度、延性和剛度。本文研究了FRP-鋼板復(fù)合材料靜力拉伸性能、溫度作用下FRP-鋼板復(fù)合材料的靜力拉伸性能、溫度作用下FRP與鋼板的界面粘結(jié)性能、FRP-鋼板復(fù)合材料在干濕交替老化作用下的耐久性能,主要包括以下幾個(gè)方面: 1、對(duì)36個(gè)制作的FRP-鋼板復(fù)合材料試件進(jìn)行靜力拉伸試驗(yàn)。研究FRP-鋼板復(fù)合材料的基本力學(xué)性能,影響因素包括:纖維種類(碳纖維、玻璃纖維和玄武巖纖維)、纖維鋪設(shè)層數(shù)、鋼板厚度以及纖維鋪設(shè)方式。研究結(jié)果表明:(1)CFRP與鋼板混雜鋪設(shè)形成的CFRP-鋼板復(fù)合材料不但具有較高的強(qiáng)度,而且具有較好的塑性性能;GFRP與鋼板混雜鋪設(shè)形成的GFRP-鋼板復(fù)合材料在鋼板屈服后具有較好的延性性能;(2)當(dāng)FRP鋪設(shè)層數(shù)一定時(shí),隨著鋼板厚度的增加,FRP-鋼板復(fù)合材料的基本力學(xué)性能增強(qiáng),但是增強(qiáng)幅度逐漸降低,當(dāng)鋼板厚度超過(guò)4mm時(shí),降低速度增大;(3)FRP與鋼板的鋪設(shè)方式越對(duì)稱、均勻,FRP-鋼板復(fù)合材料受力性能越好。根據(jù)試驗(yàn)結(jié)果,采用復(fù)合材料力學(xué)中的混合法則,本文建立了FRP-鋼板復(fù)合材料的應(yīng)力-應(yīng)變關(guān)系模型,理論計(jì)算值與試驗(yàn)值吻合較好。 2、對(duì)66個(gè)在30℃‖120℃溫度作用下的CFRP-鋼板復(fù)合材料和GFRP-鋼板復(fù)合材料進(jìn)行了靜力拉伸試驗(yàn)。試驗(yàn)結(jié)果表明:隨著溫度升高,FRP-鋼板復(fù)合材料的基本力學(xué)性能降低,在粘結(jié)膠體的玻璃化轉(zhuǎn)化溫度50℃附近降低速率較大。根據(jù)試驗(yàn)結(jié)果,本文分別提出了溫度作用下,FRP-鋼板復(fù)合材料彈性模量、鋼板屈服后模量、屈服強(qiáng)度和纖維斷裂強(qiáng)度計(jì)算公式,計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好。 3、通過(guò)153個(gè)FRP與鋼板的雙向剪切試件,研究溫度范圍30℃~120℃作用下FRP與鋼板的界面粘結(jié)性能。根據(jù)研究目的不同,采用兩種FRP與鋼板雙向剪切模型進(jìn)行試驗(yàn)研究。(1)FRP與鋼板的雙向剪切模型Ⅰ試驗(yàn)結(jié)果表明:1)隨著溫度升高,FRP與鋼板雙向剪切模型Ⅰ試件的破壞模式發(fā)生轉(zhuǎn)變;2)隨著溫度升高,FRP與鋼板雙向剪切模型Ⅰ試件的極限強(qiáng)度和粘結(jié)剛度逐漸降低,在粘結(jié)膠體的玻璃化轉(zhuǎn)化溫度附近降低速率較大。根據(jù)試驗(yàn)結(jié)果,結(jié)合粘結(jié)膠體在溫度作用下的力學(xué)性能退化關(guān)系,采用修正的Arrhenius(阿倫尼烏斯)方程,本文提出了FRP與鋼板粘結(jié)剛度退化計(jì)算公式,計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好。(2)FRP與鋼板的雙向剪切模型Ⅱ試驗(yàn)結(jié)果表明:1)隨著溫度升高,FRP與鋼板雙向剪切模型Ⅱ試件的極限強(qiáng)度降低;2)溫度作用下,FRP與鋼板雙向剪切模型Ⅱ試件的破壞模式主要是FRP與鋼板的剝離破壞;3)在研究FRP與混凝土粘結(jié)界面成果的基礎(chǔ)上,本文建立了不同溫度作用下FRP與鋼板粘結(jié)剪應(yīng)力-滑移關(guān)系模型,并提出了不同溫度作用下,FRP與鋼板粘結(jié)極限承載力計(jì)算公式,并將計(jì)算值與試驗(yàn)值對(duì)比,結(jié)果表明吻合較好。 4、通過(guò)120個(gè)試件研究干濕交替作用下CFRP-鋼板復(fù)合材料的耐久性能。試驗(yàn)結(jié)果表明:(1)干濕交替作用對(duì)單側(cè)鋪設(shè)CFRP-鋼板復(fù)合材料的屈服強(qiáng)度、纖維斷裂強(qiáng)度影響較大,對(duì)彈性模量和鋼板屈服后模量影響較小;(2)干濕交替作用對(duì)雙側(cè)鋪設(shè)CFRP-鋼板復(fù)合材料的屈服強(qiáng)度、纖維斷裂強(qiáng)度、彈性模量以及纖維屈服后模量均有較大影響;(3)雙側(cè)鋪設(shè)CFRP-鋼板復(fù)合材料的力學(xué)性能退化速率高于單側(cè)鋪設(shè)CFRP-鋼板復(fù)合材料。根據(jù)試驗(yàn)結(jié)果,本文建立了在干濕交替作用下CFRP-鋼板復(fù)合材料靜力拉伸性能計(jì)算模型,對(duì)CFRP-鋼板復(fù)合材料在干濕交替環(huán)境下的基本力學(xué)性能損失進(jìn)行預(yù)測(cè)分析,模型計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好。本文提出了CFRP-鋼板復(fù)合材料纖維斷裂強(qiáng)度計(jì)算模型對(duì)CFRP-鋼板復(fù)合材料在干濕交替環(huán)境下的使用壽命進(jìn)行預(yù)測(cè)分析。
[Abstract]:Fiber Reinforced Polymer (FRP) is widely used in structural reinforcement because of its lightweight, high strength and other advantages. However, the brittleness of the structure strengthened by FRP is remarkable, which is not conducive to the seismic performance of the structure. A new kind of composite material, FRP-steel plate composite material, is developed by mixing FRP and steel plate. This new composite material can give full play to the complementarity of mechanical properties between FRP and steel plate and significantly improve the strength, ductility and stiffness of a single reinforcement material. The static tensile properties of FRP-steel sheet composites, the interfacial bond between FRP and steel sheet under temperature, and the durability of FRP-steel sheet composites under alternate wet-dry aging mainly include the following aspects:
1. Static tensile tests were carried out on 36 FRP-steel composite specimens. The basic mechanical properties of FRP-steel composite were studied. The influencing factors included fiber types (carbon fiber, glass fiber and basalt fiber), fiber layers, steel plate thickness and fiber laying methods. The CFRP-steel sheet composites formed by laying not only have higher strength but also better plasticity; the GFRP-steel sheet composites formed by mixing GFRP and steel sheet have better ductility after yield; (2) When the number of layers of FRP is fixed, with the increase of the thickness of steel sheet, the FRP-steel sheet composites are basically the same. The mechanical properties of FRP-steel sheet composites are enhanced, but the extent of reinforcement decreases gradually, and the reduction rate increases when the thickness of steel sheet exceeds 4 mm. (3) The more symmetrical and uniform the laying mode between FRP and steel sheet, the better the mechanical properties of FRP-steel sheet composites. According to the experimental results, the stress-stress of FRP-steel sheet Composites is established by using the mixing rule in composite mechanics. The theoretical value is in good agreement with the experimental data.
2. Static tensile tests were carried out on 66 CFRP-steel plate composites and GFRP-steel plate composites at 30 120 C. The results show that the basic mechanical properties of FRP-steel plate composites decrease with the increase of temperature, and the glass transition temperature of bonding colloid decreases greatly near 50. In this paper, the formulas for calculating the elastic modulus, post-yield modulus, yield strength and fiber fracture strength of FRP-steel sheet composites under the action of temperature are presented. The calculated results are in good agreement with the experimental results.
3. The interfacial bonding between FRP and steel sheet was studied by 153 specimens of FRP and steel sheet under the temperature range of 30 ~120 C. According to different research purposes, two kinds of two-way shear models were used to study the interfacial bonding between FRP and steel sheet. The ultimate strength and bond stiffness of FRP and steel plate bi-directional shear model I specimens decrease gradually with the increase of temperature, and the rate of decrease is larger near the glass transition temperature of bond colloid. According to the test results, the mechanical properties of bond colloid under the action of temperature are combined. Based on the modified Arrhenius equation, a formula for calculating the degradation of bond stiffness between FRP and steel plate is presented. The results are in good agreement with the experimental results. (2) The experimental results of two-way shear model II of FRP and steel plate show that: 1) the ultimate strength of two-way shear model II decreases with the increase of temperature. The failure modes of FRP and steel plate bi-directional shear model II specimens are mainly the peeling failure of FRP and steel plate under the action of temperature; 3) Based on the study of the results of the bond interface between FRP and concrete, the bond shear stress-slip relationship model of FRP and steel plate under the action of different temperatures is established, and the bond shear stress-slip relationship between FRP and steel plate under the action of different temperatures is proposed. The formula for calculating ultimate bearing capacity of steel plate is calculated, and the calculated value is compared with the experimental value.
4. The durability of CFRP-steel sheet composites was studied by 120 specimens under alternating wetting and drying. The results show that: (1) alternating wetting and drying have great influence on the yield strength and fiber fracture strength of unilateral CFRP-steel sheet composites, but little influence on elastic modulus and post-yield modulus of steel sheet; (2) alternating wetting and drying have great influence on both sides of the composites. The yield strength, fiber breaking strength, elastic modulus and post-yield modulus of CFRP-steel sheet composites have great influence. (3) The degradation rate of mechanical properties of CFRP-steel sheet composites with both sides is higher than that of CFRP-steel sheet composites with one side. The calculation model of static tensile properties of CFRP-steel plate composites is used to predict and analyze the basic mechanical properties loss of CFRP-steel plate composites under alternating wet and dry environments. The calculated results of the model are in good agreement with the experimental results. Prediction and analysis of service life under the environment.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU599

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周履;用FRP力筋修建的預(yù)應(yīng)力混凝土橋梁25例[J];國(guó)外橋梁;1998年04期

2 朱夢(mèng)君,劉宏偉;纖維增強(qiáng)復(fù)合材料(FRP)的研究與應(yīng)用[J];淮海工學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年03期

3 柯志貴;黃麗華;;FRP受彎加固鋼筋混凝土梁破壞形式研究綜述[J];山西建筑;2009年04期

4 康惠明;;用玻璃鋼(FRP)制造汽車零部件[J];汽車技術(shù);1982年04期

5 董永祺;第十一屆全國(guó)FRP年會(huì)在蓉舉行[J];建材工業(yè)信息;1996年04期

6 張耀宏;;纖維強(qiáng)化復(fù)合材料(FRP)在工程機(jī)械上的應(yīng)用[J];工程機(jī)械文摘;1997年01期

7 高娜;;纖維增強(qiáng)復(fù)合材料FRP的組分對(duì)性能的影響[J];山西建筑;2011年33期

8 董永祺;;1993年國(guó)內(nèi)生產(chǎn)FRP殼體轎車簡(jiǎn)況[J];玻璃鋼;1994年01期

9 蔣漢生,金義洪;FRP在建筑領(lǐng)域的應(yīng)用[J];玻璃鋼/復(fù)合材料;1999年03期

10 趙鴻漢;;天津龍泓公司大口徑FRP給排水管道09年獲大單 天津、山西兩地合同額超億元[J];纖維復(fù)合材料;2009年02期

相關(guān)會(huì)議論文 前10條

1 顧祥林;;FRP預(yù)應(yīng)力混凝土結(jié)構(gòu)體系[A];第八屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ卷)[C];1999年

2 夏天祥;呂國(guó)龍;;日本FRP的回收[A];第十三屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];1999年

3 王言磊;郝慶多;歐進(jìn)萍;;FRP-混凝土組合梁試驗(yàn)研究[A];第五屆全國(guó)FRP學(xué)術(shù)交流會(huì)論文集[C];2007年

4 呂文龍;陸瑞明;陳雯;Amen AGBOSSOU;;嵌入式FRP板加固鋼筋混凝土受彎構(gòu)件的試驗(yàn)研究[A];第五屆全國(guó)FRP學(xué)術(shù)交流會(huì)論文集[C];2007年

5 程瑤;劉富勤;徐舜華;;FRP復(fù)合板樁性能探討[A];第五屆全國(guó)FRP學(xué)術(shù)交流會(huì)論文集[C];2007年

6 錢永嘉;;淺談如何提高FRP模具的質(zhì)量[A];第十二屆玻璃鋼/復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];1997年

7 高丹盈;李趁趁;趙軍;;纖維增強(qiáng)塑料(FRP)加固鋼筋混凝土梁抗裂度的計(jì)算方法[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年

8 岳清瑞;楊勇新;李榮;;纖維增強(qiáng)復(fù)合材料(FRP)及其應(yīng)用技術(shù)進(jìn)展[A];“發(fā)展綠色技術(shù),,建設(shè)節(jié)約結(jié)構(gòu)”——第十四屆全國(guó)混凝土及預(yù)應(yīng)力混凝土學(xué)術(shù)會(huì)議論文集[C];2007年

9 余流;;FRP型材和FRP橋面板的工程應(yīng)用[A];第六屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2006年

10 金飛飛;馮鵬;葉列平;;輕質(zhì)FRP人行天橋的動(dòng)力特性研究[A];工業(yè)建筑(2009·增刊)——第六屆全國(guó)FRP學(xué)術(shù)交流會(huì)論文集[C];2009年

相關(guān)重要報(bào)紙文章 前6條

1 趙鴻漢;上海茂迅客車“FRP大包圍”出擊國(guó)外客車配套市場(chǎng)[N];中國(guó)建材報(bào);2009年

2 劉成;連云港維連公司開(kāi)發(fā)出FRP廢棄物料破碎機(jī)[N];中國(guó)建材報(bào);2008年

3 ;FRP廢棄物破碎機(jī)與波、平板流水線獲專利[N];中國(guó)建材報(bào);2002年

4 趙工;FRP游艇大型高檔化帶旺多領(lǐng)域商機(jī)[N];中國(guó)建材報(bào);2008年

5 木易;FRP高速公路跨線橋市場(chǎng)前景廣闊[N];中國(guó)建材報(bào);2010年

6 本報(bào)記者 杭曉建;FRP與PVC共擠造增強(qiáng)型新門窗[N];中華建筑報(bào);2002年

相關(guān)博士學(xué)位論文 前3條

1 李曉瑾;FRP-鋼板復(fù)合材料基本力學(xué)性能和耐久性能研究[D];武漢大學(xué);2014年

2 李建輝;混雜FRP及其加固腐蝕混凝土柱抗震性能試驗(yàn)與理論研究[D];北京工業(yè)大學(xué);2010年

3 陳瑛;雙材料梁界面力學(xué)模型及其在FRP-混凝土界面斷裂研究中的應(yīng)用[D];河海大學(xué);2006年

相關(guān)碩士學(xué)位論文 前10條

1 徐瑞卿;外貼FRP-角鋼組合加固節(jié)點(diǎn)方法研究[D];長(zhǎng)安大學(xué);2015年

2 單翠;配送中心多分揀區(qū)FRP建模及算法設(shè)計(jì)與分析[D];西南交通大學(xué);2015年

3 何俊;高性能新型FRP閘門性能試驗(yàn)研究[D];中冶集團(tuán)建筑研究總院;2013年

4 許小山;FRP/金屬疊層板粘接界面強(qiáng)化機(jī)理與方法研究[D];大連理工大學(xué);2015年

5 陳智;FRP-鋼管約束混凝土損傷聲發(fā)射監(jiān)測(cè)及健康診斷[D];大連理工大學(xué);2015年

6 姚明俠;溫度與加載速度對(duì)FRP與鋼板界面力學(xué)性能的影響[D];湖南大學(xué);2016年

7 沈海彬;FRP型材節(jié)點(diǎn)連接長(zhǎng)期性能及桁架結(jié)構(gòu)分析[D];東南大學(xué);2016年

8 雷文杰;外貼FRP混凝土受彎構(gòu)件疲勞設(shè)計(jì)方法研究[D];東南大學(xué);2016年

9 劉凌鋒;FRP管與混凝土的粘結(jié)性能試驗(yàn)研究[D];東南大學(xué);2016年

10 金茂鑫;FRP-鋼復(fù)合管約束混凝土方柱抗震性能研究[D];大連理工大學(xué);2016年



本文編號(hào):2245270

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2245270.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8c3f8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com