地震作用下鋼管混凝土格構式高墩—桁式梁輕型橋粱行車安全性分析
[Abstract]:Concrete-filled steel tubular latticed high piers-truss beam light bridge is a new type of composite bridge. As the first bridge of this type in China, the proportion of live load and dead load of Qianhaizi Bridge is larger than that of ordinary bridge. At the same time, the bridge pier is long, the structure is novel and the structure is complex, which makes the seismic performance of the bridge different from that of the ordinary composite structure. Because the bridge is located in the transition zone from strong earthquake to weak earthquake, the earthquake intensity is large. Under the action of strong earthquake, the bridge may cause excessive displacement and vibration of the main beam and affect the safety of the driving vehicle. Therefore, the dynamic response of vehicle-bridge of Qianhaizi Bridge under earthquake is analyzed in this paper, and the driving safety of high-pier bridge under earthquake is discussed. The main work and conclusions are as follows: (1) based on the coupled motion equation of vehicle-bridge interaction considering road roughness and considering the effect of seismic load, the coupling calculation method of vehicle-bridge interaction under earthquake action is established. The coupling calculation method of vehicle-bridge interaction under earthquake action is added to the developed program NL_Beam3D. The coupling calculation of vehicle-bridge system interaction under seismic action is realized. (2) the results are compared with those of real bridge load test and seismic simulation shaking table scale model test. The results show that the vibration modes obtained by finite element analysis are consistent with those obtained by two tests. The in-plane, out-of-plane fundamental frequencies obtained by finite element analysis are close to those obtained by experiments, and the error is less than 5%. Under the action of moving vehicle, the finite element calculation results of the dynamic deflection of the chord under the 20th span main girder are close to the measured values of the real bridge load test, and the shape of the displacement time history curve obtained by the finite element calculation of the bridge under the E1 earthquake is consistent with that of the shaking table test. The measured displacement amplitude and the theoretical displacement amplitude approximately satisfy the similarity ratio of 1 / 82, thus confirming the correctness of the calculation method and the program developed in this paper. (3) the E1 earthquake is input in the most disadvantageous direction. The bridge is mainly based on the first several transversal symmetrical vibration modes. Using the vehicle roll index to evaluate the driving safety, it can be seen that the maximum lateral acceleration of the bridge is less than the threshold value of the vehicle overturning index, so the vehicles travelling on the bridge under E1 earthquake will not roll; The corresponding maximum displacement of the piers is compared with the limit of H / 300 specified in the guidelines for the Design and Construction of concrete filled Steel Tube Bridges, except for the 8# piers. The rest of the piers can meet the requirements. (4) the traffic safety of Qianhaizi Bridge is analyzed by increasing the earthquake intensity step by step. The results show that, first, when the peak ground acceleration PGA is 0.17g (E1 ground motion) and 0.26g (1.53E1 earthquake), the lateral displacement of the piers exceeds the limit of H / 300, but the heavy truck does not roll. Heavy goods vehicles may be capsized first, The PGA of the two combinations are 0.23g (1.35 times E1) and 0.32g (1.88% E1) respectively. The ratio of transverse displacement to height of pier is 1 / 178 and 1 / 198, respectively, which is greater than the limit stipulated in the guidelines for the Design and Construction of concrete filled Steel Tube Bridges. The value of 1 / 300 indicates that the guide limits the pier top displacement more strictly.
【學位授予單位】:福州大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TU398.9
【相似文獻】
相關期刊論文 前10條
1 毋劍平,白雪霜,孫建華;不同設計使用年限下地震作用的確定方法[J];工程抗震;2003年02期
2 李劍;陳岱林;;地震作用最大方向的確定[J];建筑科學;2005年06期
3 江德保;顧曉靜;;不同設計使用年限下地震作用取值分析與建議[J];工程建設與設計;2007年04期
4 王宗策;;地震作用力的數(shù)學力學計算分析[J];科技風;2008年14期
5 吳鵬飛;曹加良;;地震作用及其確定理論[J];科技信息;2009年10期
6 歐進萍,段宇博,劉會儀;結構隨機地震作用及其統(tǒng)計參數(shù)[J];哈爾濱建筑工程學院學報;1994年05期
7 李明惠;框架在地震作用下考慮扭轉(zhuǎn)影響的計算[J];機械設計;1995年12期
8 楊翠如;國際標準《結構地震作用》簡介[J];工程抗震;1995年01期
9 符圣聰,林平,江靜貝;重要工程的地震作用取值[J];工程抗震;2003年01期
10 王儉,王偉,王中華;地震作用下土與結構物相互作用機理分析探討[J];房材與應用;2003年06期
相關會議論文 前10條
1 趙成剛;尹之潛;;以概率理論為基礎的地震作用與其它荷載的組合計算[A];工程結構可靠性——中國土木工程學會橋梁及結構工程學會第七屆學術會議論文集[C];1987年
2 周乾;閆維明;紀金豹;;地震作用下浮放物體搖晃響應仿真分析[A];第十屆全國沖擊動力學學術會議論文摘要集[C];2011年
3 戴秋云;;在地震作用下核電站結構可靠性評價[A];工程結構可靠性——中國土木工程學會橋梁及結構工程學會第七屆學術會議論文集[C];1987年
4 楊成;高夕良;李力;趙世春;張光輝;李英民;;大型火車站臺結構的地震作用下扭轉(zhuǎn)不規(guī)則分析[A];第八屆全國地震工程學術會議論文集(Ⅰ)[C];2010年
5 張譽;王衛(wèi);;雙向地震作用下不規(guī)則框架的扭轉(zhuǎn)分析[A];第三屆全國結構工程學術會議論文集(下)[C];1994年
6 唐鳳乾;趙均;;屋頂塔上微波天線的地震作用計算[A];第七屆全國現(xiàn)代結構工程學術研討會論文集[C];2007年
7 侯杰;;地震作用下磚砌墻體倒塌分析[A];汶川地震建筑震害調(diào)查與災后重建分析報告[C];2008年
8 胡盈輝;莊茁;由小川;;大型儲液罐在地震作用下的附加質(zhì)量法研究[A];北京力學會第十六屆學術年會論文集[C];2010年
9 吳波;歐進萍;;在多次地震作用下結構概率累積損傷初探[A];工程結構可靠性——中國土木工程學會橋梁及結構工程學會結構可靠度委員會全國第三屆學術交流會議論文集[C];1992年
10 蔡新;李益;吳威;葉松;;地震作用下堤防風險分析研究[A];現(xiàn)代水利水電工程抗震防災研究與進展(2011年)[C];2011年
相關博士學位論文 前3條
1 王朋;雙向地震作用下高層建筑混合結構抗震性能及損傷模式研究[D];西安建筑科技大學;2015年
2 高霖;地面式鋼筋混凝土水池自愈、滲漏試驗及地震響應分析[D];中國地震局工程力學研究所;2015年
3 崔麗麗;基于唯象模型的梁式橋地震碰撞分析及抗震性能研究[D];哈爾濱工業(yè)大學;2015年
相關碩士學位論文 前10條
1 任辰昊;單雙向地震作用下框架—核心筒結構滯回耗能研究[D];西安建筑科技大學;2015年
2 沙峰;地震作用下車—橋空間耦合系統(tǒng)動力響應分析[D];蘇州大學;2015年
3 王濤;大型落地式鋼板倉地震作用分析[D];山東大學;2015年
4 管英s,
本文編號:2140920
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2140920.html