燃?xì)忾L(zhǎng)直管道泄漏檢測(cè)及定位方法研究
本文選題:燃?xì)忾L(zhǎng)直管道 + 泄漏檢測(cè)及定位; 參考:《哈爾濱工業(yè)大學(xué)》2014年博士論文
【摘要】:目前,我國(guó)國(guó)民經(jīng)濟(jì)的持續(xù)高速發(fā)展對(duì)能源,特別是燃?xì)赓Y源的需求越來(lái)越迫切。隨著我國(guó)西部天然氣大開發(fā)和國(guó)外天然氣的大量引進(jìn),燃?xì)夤艿赖拈L(zhǎng)度越來(lái)越長(zhǎng),并且呈現(xiàn)高壓力、大管徑的特點(diǎn)。伴隨著這些高壓燃?xì)夤艿赖拈L(zhǎng)度不斷增加,管道泄漏事故也時(shí)有發(fā)生。因?yàn)楣艿纼?nèi)燃?xì)鈮毫芨,一旦發(fā)生泄漏,會(huì)造成嚴(yán)重的生命財(cái)產(chǎn)損失和環(huán)境污染。因此,及時(shí)發(fā)現(xiàn)泄漏并定位泄漏位置,開展應(yīng)對(duì)措施,對(duì)燃?xì)夤艿腊踩陵P(guān)重要。本文采用實(shí)驗(yàn)和理論相結(jié)合的方法,對(duì)燃?xì)忾L(zhǎng)直管道的泄漏檢測(cè)與定位做了以下的研究: 根據(jù)燃?xì)饬鲃?dòng)基本控制方程,針對(duì)燃?xì)夤艿勒9r和泄漏工況,利用特征線法分別推導(dǎo)了基本控制方程對(duì)應(yīng)的差分方程,研究了相應(yīng)的計(jì)算方法。根據(jù)燃?xì)饬鲃?dòng)的運(yùn)動(dòng)方程和能量方程推導(dǎo)出管道沿線壓力和溫度分布。建立了燃?xì)夤艿佬孤┑膬?chǔ)罐模型、小孔模型、大孔模型和管道模型。并利用計(jì)算算例,對(duì)模型的正確性進(jìn)行了驗(yàn)證,實(shí)現(xiàn)了燃?xì)夤艿佬孤┝康挠?jì)算。 根據(jù)實(shí)驗(yàn)研究目的,考慮研究對(duì)象的物理模型和實(shí)驗(yàn)條件,改造搭建了燃?xì)庵惫艿佬孤z測(cè)實(shí)驗(yàn)臺(tái)。研究了光纖光柵應(yīng)變傳感器檢測(cè)管道內(nèi)壓力變化的原理,并進(jìn)行了實(shí)驗(yàn)測(cè)試。結(jié)合流體力學(xué)理論,對(duì)泄漏實(shí)驗(yàn)結(jié)果進(jìn)行了分析,驗(yàn)證了實(shí)驗(yàn)研究的可行性。 為了利用基于擴(kuò)展卡爾曼濾波器的方法來(lái)檢測(cè)泄漏并定位泄漏位置,將濾波器估計(jì)的實(shí)時(shí)模型法的基本思想與已經(jīng)建立的離散化的泄漏工況下的管道瞬態(tài)流動(dòng)模型結(jié)合,,假設(shè)泄漏分布在分段點(diǎn)上,從而建立離散化的包含多點(diǎn)泄漏的瞬態(tài)流動(dòng)模型。將分段點(diǎn)上泄漏量包含到模型中,并使其成為狀態(tài)變量的一個(gè)分量。利用擴(kuò)展卡爾曼濾波器對(duì)狀態(tài)變量進(jìn)行估計(jì),并利用等效管道的原理,研究了實(shí)際管道泄漏量和泄漏位置的計(jì)算方法。應(yīng)用模擬算例和實(shí)驗(yàn)數(shù)據(jù)測(cè)試驗(yàn)證了該方法。 負(fù)壓波法是目前應(yīng)用最廣泛的管道泄漏檢測(cè)與定位的方法,但這種方法的漏報(bào)率比較高、定位精度比較低。本文將光纖傳感技術(shù)與負(fù)壓波法結(jié)合,提出一種改進(jìn)負(fù)壓波法,并研究了此方法泄漏檢測(cè)及定位的原理。研究了基于小波閾值法的負(fù)壓波信號(hào)降噪的方法。通過(guò)實(shí)驗(yàn)對(duì)比及負(fù)壓波衰減規(guī)律的研究,從技術(shù)和理論上分析了改進(jìn)負(fù)壓波法檢測(cè)效果優(yōu)于負(fù)壓波法的原因。 為了應(yīng)用改進(jìn)負(fù)壓波法定位泄漏位置,首先研究了小波分析尋找信號(hào)突變點(diǎn)的方法,并利用此方法得到負(fù)壓波傳播到上下游光纖光柵應(yīng)變傳感器的時(shí)間差。其次,考慮管道內(nèi)氣體流速變化和負(fù)壓波傳播速度變化對(duì)泄漏定位的影響,建立了改進(jìn)的燃?xì)夤艿佬孤┒ㄎ凰惴,并利用?fù)化辛普森和二分法進(jìn)行求解。最后,應(yīng)用實(shí)驗(yàn)數(shù)據(jù)測(cè)試驗(yàn)證了該方法的定位效果。 為了降低誤漏報(bào)率、減少人工,將模式識(shí)別的理論引入到燃?xì)夤艿赖男孤z測(cè)。提取改進(jìn)負(fù)壓波法采集到的泄漏工況和正常工況下的波形特征作為輸入特征向量,并由此建立基于最小二乘支持向量機(jī)的燃?xì)夤艿佬孤z測(cè)模型,實(shí)現(xiàn)了燃?xì)夤艿佬孤┑膶?shí)時(shí)智能檢測(cè)。
[Abstract]:At present, the continuous and rapid development of China's national economy is becoming more and more urgent for energy, especially gas resources. With the development of natural gas in the west of China and the introduction of foreign natural gas, the length of gas pipeline is longer and longer, and the high pressure, the special point of the large pipe diameter is accompanied by the increasing length of these high pressure gas pipelines. In addition, pipeline leakage accidents also occur. Because the gas pressure in the pipeline is very high, once the leakage occurs, it will cause serious loss of life and property and environmental pollution. Therefore, it is very important for gas pipeline safety to find leakage and locate the leakage position in time and carry out the countermeasures. This paper uses the method of combining experiment and theory to the gas. The leakage detection and location of long straight pipes have been studied as follows:
According to the basic control equation of gas flow, the differential equation corresponding to the basic control equation is derived by using the characteristic line method according to the normal and leakage conditions of gas pipeline, and the corresponding calculation method is studied. According to the motion equation and energy equation of gas flow, the distribution of pressure and temperature along the pipe is derived. A gas pipeline is established. The leaky tank model, the small hole model, the big hole model and the pipe model are used to verify the correctness of the model, and the calculation of the leakage of the gas pipeline is realized.
According to the purpose of the experiment, the physical model and the experimental conditions of the object are considered, and the test bench for the leakage detection of the gas straight pipeline is built. The principle of the change of the pressure in the pipe by the fiber grating strain sensor is studied, and the experimental test is carried out. The leakage experiment results are analyzed with the theory of fluid mechanics, and the actual results are verified. The feasibility of the study is tested.
In order to detect leakage and locate the leakage position based on the extended Calman filter, the basic idea of the real-time model method of the filter estimation is combined with the established transient flow model of the pipeline under the discrete leakage condition, assuming that the leakage is distributed on the piecewise point, thus establishing the discrete multi point leakage. The transient flow model is included in the model, and it makes it a component of the state variable. Using the extended Calman filter to estimate the state variable, and using the principle of the equivalent pipe, the calculation method of the leakage and leakage position of the actual pipeline is studied. The simulation example and experimental data test are applied. The method is proved.
Negative pressure wave method is the most widely used method of pipeline leakage detection and positioning, but the leakage rate of this method is high and the positioning accuracy is low. In this paper, an improved negative pressure wave method is proposed by combining optical fiber sensing technology with negative pressure wave method, and the principle of leakage detection and location based on this method is studied. The wavelet threshold method is studied. The method of reducing the noise of negative pressure wave signals. Through the comparison of experiment and the study of the attenuation law of negative pressure wave, the reasons for the improvement of the negative pressure wave method are analyzed from the technology and theory.
In order to locate the leakage position of the improved negative pressure wave method, the method of finding the signal abrupt point by the wavelet analysis is first studied, and the time difference between the negative pressure wave propagation to the upstream and downstream fiber Bragg grating strain sensor is obtained. Secondly, the influence of the change of gas flow velocity in the pipeline and the change of the propagation velocity of the negative pressure wave on the leakage location is considered. The improved gas pipeline leakage location algorithm and the complex Simpson and dichotomous method are used to solve the problem. Finally, the experimental data test is used to verify the positioning effect of the method.
In order to reduce the false alarm rate and reduce the manpower, the theory of pattern recognition is introduced to the leakage detection of gas pipeline. The characteristics of the leaky conditions collected by the improved negative pressure wave method and the characteristics of the normal operating conditions are extracted as the input feature vectors, and the leakage detection model based on the least square support direction quantity machine is established, and the fuel gas pipeline leakage detection model is established. Real time intelligent detection of gas pipeline leakage.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU996.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳志剛;張來(lái)斌;王朝暉;梁偉;;基于分布式光纖傳感器的輸氣管道泄漏檢測(cè)方法[J];傳感器與微系統(tǒng);2007年07期
2 白莉,李洪升,賈旭,崔莉,王慶國(guó);基于瞬變流和故障檢測(cè)的管線泄漏監(jiān)測(cè)試驗(yàn)分析[J];大連理工大學(xué)學(xué)報(bào);2005年01期
3 楊玉坤;王新;;FBG應(yīng)變傳感器在盾構(gòu)隧道監(jiān)測(cè)中應(yīng)用[J];低溫建筑技術(shù);2011年02期
4 靳世久,王立寧,李健;瞬態(tài)負(fù)壓波結(jié)構(gòu)模式識(shí)別法原油管道泄漏檢測(cè)技術(shù)[J];電子測(cè)量與儀器學(xué)報(bào);1998年01期
5 趙廷超,黃尚廉,陳偉民;機(jī)敏土建結(jié)構(gòu)中光纖傳感技術(shù)的研究綜述[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);1997年05期
6 肖智光;吳嗣躍;薛小紅;;管道泄漏檢測(cè)技術(shù)應(yīng)用分析[J];管道技術(shù)與設(shè)備;2009年02期
7 蒲明;;中國(guó)油氣管道發(fā)展現(xiàn)狀及展望[J];國(guó)際石油經(jīng)濟(jì);2009年03期
8 戚愛華;;我國(guó)油氣管道運(yùn)輸發(fā)展現(xiàn)狀及問(wèn)題分析[J];國(guó)際石油經(jīng)濟(jì);2009年12期
9 蒲明;馬建國(guó);;2010年我國(guó)油氣管道新進(jìn)展[J];國(guó)際石油經(jīng)濟(jì);2011年03期
10 潘樹新,劉耀煒;光纖傳感器在水文地球化學(xué)地震前兆觀測(cè)中的應(yīng)用及其前景[J];國(guó)際地震動(dòng)態(tài);2001年12期
相關(guān)博士學(xué)位論文 前10條
1 楊榮根;長(zhǎng)輸石油管道泄漏檢測(cè)與定位技術(shù)研究[D];南京理工大學(xué);2011年
2 陽(yáng)子軒;復(fù)雜管道泄漏檢測(cè)技術(shù)研究[D];武漢理工大學(xué);2011年
3 曲志剛;分布式光纖油氣長(zhǎng)輸管道泄漏檢測(cè)及預(yù)警技術(shù)研究[D];天津大學(xué);2007年
4 胡瓊;在役管線泄漏檢測(cè)技術(shù)研究[D];武漢理工大學(xué);2009年
5 孫潔娣;基于多地震動(dòng)傳感器的管道安全監(jiān)測(cè)預(yù)警關(guān)鍵技術(shù)的研究[D];天津大學(xué);2009年
6 張宇;輸油管道泄漏檢測(cè)新方法與關(guān)鍵技術(shù)研究[D];天津大學(xué);2009年
7 邢永忠;最小二乘支持向量機(jī)的若干問(wèn)題與應(yīng)用研究[D];南京理工大學(xué);2009年
8 孫良;基于模型的油氣管道泄漏檢測(cè)與定位方法研究[D];北京化工大學(xué);2010年
9 許姜嚴(yán);基于小波的巖石節(jié)理裂隙圖像處理[D];電子科技大學(xué);2010年
10 雷翠紅;供熱管網(wǎng)泄漏故障診斷的研究[D];哈爾濱工業(yè)大學(xué);2010年
本文編號(hào):2029210
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2029210.html