壓彎構(gòu)件非線性分析
本文選題:壓彎構(gòu)件 + 非線性。 參考:《昆明理工大學(xué)》2014年碩士論文
【摘要】:在工程實(shí)際中,鋼結(jié)構(gòu)的穩(wěn)定性問(wèn)題一直是很突出的一個(gè)問(wèn)題,很多鋼結(jié)構(gòu)工程因?yàn)闆](méi)有處理好穩(wěn)定性問(wèn)題而致使工程破壞,造成重大的經(jīng)濟(jì)損失和人員傷亡。鋼結(jié)構(gòu)構(gòu)件主要由桿件(拉桿、壓桿)組成。拉桿的承載力主要與材料的抗拉強(qiáng)度有關(guān),而單純承受軸心壓力的桿件很少,大多是由于壓力偏心、橫向荷載、材料缺陷和幾何缺陷等造成壓彎作用,形成壓彎構(gòu)件,這就對(duì)桿件的穩(wěn)定性產(chǎn)生很大的影響。因此壓桿的承載能力極限值不僅與材料強(qiáng)度有關(guān),更與桿件的穩(wěn)定性能有關(guān)。 本文主要對(duì)單向壓彎構(gòu)件進(jìn)行非線性分析,研究的失穩(wěn)狀態(tài)為第二類失穩(wěn)(極值點(diǎn)失穩(wěn))。本文考慮了截面的材料非線性,即不但考慮材料的彈性變形階段,也考慮了截面的塑性變形階段,這也更加符合客觀實(shí)際情況。本文從截面到桿件分兩個(gè)層次進(jìn)行逐步深入,最終得到壓彎構(gòu)件的荷載-撓度的相關(guān)關(guān)系及塑性荷載極限值。 截面層次非線性分析即研究截面軸力-彎矩-曲率(n-m-φ)的相關(guān)關(guān)系。本文采用三種有限元數(shù)值迭代法(割線剛度矩陣迭代法、切線剛度矩陣迭代法和常剛度矩陣迭代法)對(duì)矩形截面和工字形截面進(jìn)行了分析,并采用matlab軟件編程進(jìn)行計(jì)算,得到了大量有價(jià)值的數(shù)據(jù),并繪制成直觀的曲線圖。 桿件層次非線性分析即研究長(zhǎng)細(xì)比-偏心距-壓力-撓度(λ-e-n-v)的相關(guān)關(guān)系。本文采用共軛梁法對(duì)壓彎構(gòu)件進(jìn)行分析,采用matlab軟件編程進(jìn)行計(jì)算。首先分析了僅考慮彈性時(shí)的桿件荷載位移相關(guān)關(guān)系;然后,分析了考慮彈塑性時(shí)的桿件荷載位移相關(guān)關(guān)系;最后,在彈塑性分析的基礎(chǔ)上得到了壓彎構(gòu)件的塑性極限值與長(zhǎng)細(xì)比值的相關(guān)關(guān)系。且將以上提到的研究成果均以曲線圖的形式進(jìn)行了展示。通過(guò)查看圖中曲線,我們可以很方便的得到壓彎桿件的塑性極限荷載值。 在驗(yàn)證本文研究方法和結(jié)論的方法選擇上,本文是分兩部分進(jìn)行的:截面層次采用與陳惠發(fā)教授的解析法分析結(jié)果進(jìn)行對(duì)比驗(yàn)證,吻合度很高;桿件層次采用Ansvs軟件進(jìn)行建模分析,本文分析結(jié)果與其得到的結(jié)果非常吻合,也間接證明了截面層次分析方法及結(jié)果的正確性。
[Abstract]:In engineering practice, the stability of steel structure has been a very prominent problem, many steel structure engineering because of failure to deal with the stability of the engineering damage, resulting in significant economic losses and casualties. Steel structure members are mainly composed of members (pull rod, compression bar). The bearing capacity of the strut is mainly related to the tensile strength of the material, but the members simply bear the axial pressure are few, mostly because of the pressure eccentricity, the transverse load, the material defect and the geometric defect and so on, resulting in the compression and bending member. This will have a great impact on the stability of the members. Therefore, the limit value of bearing capacity is not only related to the strength of material, but also to the stability of the member. In this paper, nonlinear analysis of unidirectional bending members is carried out. The studied instability state is the second kind of instability (extremum point instability). In this paper, the material nonlinearity of the section is considered, that is, not only the elastic deformation stage of the material, but also the plastic deformation stage of the section is considered, which is more in line with the objective reality. In this paper, the relationship of load-deflection and the limit value of plastic load are obtained. The hierarchical nonlinear analysis of the cross section is to study the correlation between axial force, moment and curvature of the section (n-m-蠁). In this paper, three finite element numerical iteration methods (Secant stiffness matrix iteration, tangent stiffness matrix iteration and constant stiffness matrix iteration) are used to analyze the rectangular section and the I-shaped section. A large amount of valuable data is obtained and drawn into an intuitive graph. The hierarchical nonlinear analysis of members is to study the correlation between the slenderness ratio, eccentricity, pressure and deflection (位 -e-n-v). In this paper, the conjugate beam method is used to analyze the bending members and the matlab software is used to calculate them. Firstly, the relationship between load and displacement of members considering elasticity is analyzed. Then, the relationship between load and displacement of members considering elastic-plastic is analyzed. Based on the elastic-plastic analysis, the relationship between the plastic limit value and the slenderness ratio is obtained. And the above mentioned research results are shown in the form of graphs. By looking at the curve in the diagram, we can easily get the plastic limit load value of the bending member. This paper is divided into two parts in the selection of methods to verify the research methods and conclusions of this paper: the cross-section level is compared with the analytical analysis results of Professor Chen Huifa, and the degree of agreement is very high; The Ansvs software is used to model and analyze the member levels. The results of this paper are in good agreement with the results obtained. It also indirectly proves the correctness of the section hierarchy analysis method and the results.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU391
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 劉偉;;壓彎柱的荷載位移關(guān)系非線性分析[J];低溫建筑技術(shù);2011年08期
2 李興林,王來(lái)福;鋼結(jié)構(gòu)住宅建筑在我國(guó)的發(fā)展前景[J];工程建設(shè)與設(shè)計(jì);2004年08期
3 謝振清,李立強(qiáng);順應(yīng)新世紀(jì)的潮流 構(gòu)筑“綠色住宅”工程——山東省鋼結(jié)構(gòu)節(jié)能住宅示范試點(diǎn)工程簡(jiǎn)介[J];鋼結(jié)構(gòu);2001年04期
4 汪文波,于衛(wèi)鋒,金波;鋼結(jié)構(gòu)住宅產(chǎn)業(yè)化分析[J];國(guó)外建材科技;2004年06期
5 饒芝英;多高層鋼結(jié)構(gòu)的分類及其穩(wěn)定性設(shè)計(jì)[J];建筑結(jié)構(gòu);2002年05期
6 饒芝英,童根樹(shù);鋼結(jié)構(gòu)穩(wěn)定性的新詮釋[J];建筑結(jié)構(gòu);2002年05期
7 熊曉莉,李開(kāi)禧;變截面梁柱二階分析討論[J];重慶建筑大學(xué)學(xué)報(bào);2004年02期
8 張愛(ài)蘭;建筑鋼結(jié)構(gòu)的發(fā)展現(xiàn)狀[J];新型建筑材料;2002年10期
,本文編號(hào):2027202
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/2027202.html