天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

基于小波變換的灰色馬爾可夫鏈模型及其工程應(yīng)用研究

發(fā)布時(shí)間:2018-06-09 04:04

  本文選題:變形監(jiān)測(cè) + 小波變換閾值去噪 ; 參考:《長(zhǎng)安大學(xué)》2014年碩士論文


【摘要】:近些年來(lái),得益于城鎮(zhèn)化和現(xiàn)代化步伐不斷提速,基礎(chǔ)設(shè)施建設(shè)得到了大幅度的發(fā)展,在我們的生活之中越來(lái)越多的大型建筑物和構(gòu)筑物如雨后春筍般拔地而起,毋庸置疑這些大型建筑物給我們的生活帶來(lái)很多便利,但是同時(shí)也隱藏著許多安全問(wèn)題。在建筑物施工建設(shè)和運(yùn)營(yíng)管理過(guò)程中,為了避免可能出現(xiàn)的突發(fā)狀況,需要定期的監(jiān)測(cè)建筑物的沉降,以獲得沉降變形數(shù)據(jù)。采取一些方法對(duì)所獲得的數(shù)據(jù)進(jìn)行處理和分析,盡量準(zhǔn)確地預(yù)測(cè)出建筑物變形的大致趨勢(shì),這樣我們才能有針對(duì)性地采取一些防范措施,避免突發(fā)狀況或?yàn)?zāi)難的發(fā)生。 根據(jù)觀測(cè)和分析可以知道,建筑物沉降觀測(cè)數(shù)據(jù)是一系列短序列的離散數(shù)據(jù),它具有包含噪聲并且波動(dòng)性較大的特點(diǎn)。本文在進(jìn)行研究工作時(shí)分析了目前常用的一些變形監(jiān)測(cè)數(shù)據(jù)處理以及變形預(yù)測(cè)的理論和方法,并且在前人研究的基礎(chǔ)上,結(jié)合自己對(duì)變形監(jiān)測(cè)研究的一些思考,提出了基于小波變換閾值去噪的灰色馬爾可夫鏈預(yù)測(cè)模型,并采用監(jiān)測(cè)實(shí)例對(duì)其加以應(yīng)用和驗(yàn)證。論文以西安宏信國(guó)際花園4號(hào)樓沉降變形監(jiān)測(cè)數(shù)據(jù)為作為例子,根據(jù)該項(xiàng)目沉降監(jiān)測(cè)點(diǎn)位布設(shè)情況,,應(yīng)用提出的方法對(duì)其中若干個(gè)代表性較強(qiáng)的監(jiān)測(cè)點(diǎn)進(jìn)行了分析研究。在數(shù)據(jù)處理方面,首先,用MATLAB編寫(xiě)小波去噪程序用以小波分解及小波重構(gòu),得到去噪后的有用數(shù)據(jù);其次,利用去經(jīng)過(guò)小波噪后的擬合數(shù)據(jù)建立自適應(yīng)加權(quán)灰色預(yù)測(cè)模型并預(yù)測(cè)其沉降值,以預(yù)測(cè)值與觀測(cè)值的相對(duì)誤差為劃分標(biāo)準(zhǔn)對(duì)預(yù)測(cè)值劃分狀態(tài)區(qū)間,再利用馬爾可夫鏈預(yù)測(cè)方法判斷出未來(lái)某一時(shí)刻沉降量的狀態(tài)可能處于的區(qū)間,得出狀態(tài)概率矩陣,從而利用馬氏鏈理論求得建筑物的更優(yōu)化的沉降預(yù)測(cè)值;最后,將小波變換灰色馬爾科夫鏈、單純的灰色模型以及小波灰色模型三種預(yù)測(cè)方法所得到的預(yù)測(cè)結(jié)果進(jìn)行對(duì)比分析,得出有益結(jié)論。根據(jù)對(duì)比結(jié)果可知,小波變換灰色馬爾可夫預(yù)測(cè)結(jié)果要優(yōu)于單純的灰色模型預(yù)測(cè)和小波變換灰色預(yù)測(cè)結(jié)果,也就是說(shuō)它可以進(jìn)一步提高預(yù)測(cè)精度。在處理波動(dòng)性較大的數(shù)據(jù)時(shí),利用基于小波變換的灰色馬爾可夫鏈模型能得出更優(yōu)化的預(yù)測(cè)結(jié)果,因此,這個(gè)模型也為隨機(jī)波動(dòng)性較大的數(shù)據(jù)序列提供了一種新的數(shù)據(jù)處理與預(yù)測(cè)方法。
[Abstract]:In recent years, thanks to the increasing pace of urbanization and modernization, infrastructure construction has been greatly developed, and more large buildings and structures have sprung up in our lives. There is no doubt that these large buildings bring a lot of convenience to our life, but there are also many safety problems. In the process of building construction and operation management, in order to avoid the unexpected situation, it is necessary to monitor the settlement of buildings regularly in order to obtain settlement deformation data. We should take some methods to process and analyze the obtained data, and try our best to predict the approximate trend of the deformation of the building, so that we can take some preventive measures in a targeted way. According to the observation and analysis, we can know that the observation data of building settlement is a series of discrete data of short series, which has the characteristics of noise and volatility. In this paper, some commonly used theories and methods of deformation monitoring data processing and deformation prediction are analyzed, and based on previous studies, some thoughts on deformation monitoring research are combined. A grey Markov chain prediction model based on wavelet transform threshold denoising is proposed, and it is applied and verified by a monitoring example. Based on the monitoring data of settlement deformation in the 4th Building of Hongxin International Garden in Xi'an as an example, according to the settlement monitoring site layout of the project, several representative monitoring points are analyzed and studied by using the proposed method. In the aspect of data processing, firstly, the wavelet de-noising program is written with MATLAB to decompose and reconstruct the wavelet to get the useful data after denoising. The adaptive weighted grey prediction model is established and its settlement value is predicted by using the fitting data after wavelet denoising. The state interval of the predicted value is divided according to the relative error between the predicted value and the observed value. Then the Markov chain prediction method is used to determine the possible interval of the state of settlement at a certain time in the future, and the state probability matrix is obtained, thus the more optimal settlement prediction value of the building can be obtained by using Markov chain theory. Finally, The prediction results obtained by wavelet transform grey Markov chain, simple grey model and wavelet grey model are compared and analyzed, and some useful conclusions are drawn. According to the comparative results, the grey Markov prediction results of wavelet transform are superior to those of pure grey model prediction and wavelet transform grey prediction results, that is to say, it can further improve the prediction accuracy. When dealing with volatile data, the grey Markov chain model based on wavelet transform can be used to obtain more optimized prediction results. This model also provides a new method of data processing and prediction for random data series with high volatility.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU196

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉棠洪;董克剛;周俊;于強(qiáng);;殘差灰色預(yù)測(cè)模型在地面沉降監(jiān)測(cè)中的應(yīng)用[J];城市環(huán)境與城市生態(tài);2007年05期

2 陸立,胡曉麗,王春華;用時(shí)間序列分析法進(jìn)行建筑物沉降觀測(cè)數(shù)據(jù)處理的研究[J];測(cè)繪科學(xué);2004年06期

3 鄧躍進(jìn),張正祿,章傳銀;自適應(yīng)卡爾曼濾波在變形監(jiān)測(cè)動(dòng)態(tài)數(shù)據(jù)處理中的應(yīng)用[J];武測(cè)科技;1996年01期

4 張志勇;建筑物沉降灰色模型預(yù)測(cè)[J];城市勘測(cè);1999年02期

5 翟信德;高飛;徐文兵;;新陳代謝GM(1,1)模型在建筑物沉降預(yù)測(cè)中的應(yīng)用研究[J];城市勘測(cè);2008年03期

6 繆海波;殷坤龍;柴波;李德?tīng)I(yíng);;基于非平穩(wěn)時(shí)間序列分析的滑坡變形預(yù)測(cè)[J];地質(zhì)科技情報(bào);2009年04期

7 李學(xué)平;劉慧眾;;論灰色系統(tǒng)理論中的科學(xué)方法[J];大自然探索;1987年04期

8 石雙忠;岳東杰;梅紅;;時(shí)序分析在變形監(jiān)測(cè)數(shù)據(jù)處理中的應(yīng)用[J];工程勘察;2004年03期

9 羅黨,劉思峰,黨耀國(guó);灰色模型GM(1,1)優(yōu)化[J];中國(guó)工程科學(xué);2003年08期

10 敖斌;王國(guó)體;;基于Matlab建筑物沉降的灰色預(yù)測(cè)[J];工程與建設(shè);2008年06期



本文編號(hào):1998797

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1998797.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶44ddc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com