納米流體對(duì)太陽(yáng)輻射的吸收特性及集熱適用性研究
本文選題:納米流體 + 直接吸收; 參考:《東南大學(xué)》2016年碩士論文
【摘要】:由于納米顆粒的存在,納米流體表現(xiàn)出不同于基液的輻射吸收特性和熱傳輸性能,成為一種新型高效的太陽(yáng)能輻射吸收材料。本研究提出并探討了一種采用無(wú)吸收涂層集熱管,以導(dǎo)熱油為基液的納米流體直接作為吸熱和載熱工質(zhì)的太陽(yáng)能集熱系統(tǒng)。首先,采用分光光度計(jì)測(cè)試了添加不同納米顆粒和質(zhì)量分?jǐn)?shù)的導(dǎo)熱油基液納米流體的光譜透射率和消光系數(shù),進(jìn)而研究了質(zhì)量分?jǐn)?shù)和顆粒種類對(duì)納米流體全光譜輻射吸收特性的影響。結(jié)合積分球部件,測(cè)試得到了不同質(zhì)量分?jǐn)?shù)的導(dǎo)熱油/CuO納米流體的吸光系數(shù),分析了納米顆粒的散射作用對(duì)流體吸收特性的影響。結(jié)果表明:與基液相比,納米流體對(duì)太陽(yáng)輻射的強(qiáng)化吸收效果顯著,納米顆粒的質(zhì)量分?jǐn)?shù)越大,其吸光效果越好。其次,建立了納米流體直接吸收集熱(NDASC)與采用吸收涂層集熱管的傳統(tǒng)間接吸收集熱(IASC)的傳熱數(shù)學(xué)模型,通過(guò)數(shù)值模擬對(duì)這兩種集熱方式在不同工況下的集熱性能進(jìn)行了對(duì)比分析,并結(jié)合集熱實(shí)驗(yàn)測(cè)試,得到了該新型NDASC的適宜集熱溫度范圍。結(jié)果表明:NDASC在不同太陽(yáng)輻照強(qiáng)度、環(huán)境溫度等運(yùn)行工況下,分別對(duì)應(yīng)存在一個(gè)集熱效率高于相同結(jié)構(gòu)的IASC的最大工作溫度,即效率轉(zhuǎn)折溫度;聚光比和太陽(yáng)輻照強(qiáng)度越高,效率轉(zhuǎn)折溫度越大,即NDASC適宜的工作溫度越高。再次,研究了熱管式與U型管式兩種結(jié)構(gòu)的NDASC的集熱性能。分別建立了二者的傳熱數(shù)學(xué)模型,利用CFD模擬比較了不同集熱器結(jié)構(gòu)、太陽(yáng)輻照強(qiáng)度對(duì)NDASC內(nèi)流體溫度分布特性的影響。結(jié)果表明:與IASC相比,相同結(jié)構(gòu)尺寸的NDASC具有更高的管內(nèi)中心主流溫度和集熱效率;隨著太陽(yáng)輻照強(qiáng)度和管徑的增大,熱管式NDASC和U型管式NDASC的集熱效率升高。并且,搭建了熱管式NDASC太陽(yáng)能集熱實(shí)驗(yàn)系統(tǒng)并與熱管式IASC裝置進(jìn)行對(duì)比測(cè)試。實(shí)驗(yàn)結(jié)果表明:與熱管式IASC相比,熱管式NDASC的集熱效率提高了20.4%。最后,以U型管式NDASC作為熱泵蒸發(fā)器,提出了一種基于NDASC的太陽(yáng)能熱泵系統(tǒng)。建立了熱泵系統(tǒng)的動(dòng)態(tài)數(shù)學(xué)模型,模擬分析了該熱泵系統(tǒng)在循環(huán)加熱水過(guò)程中各參數(shù)的變化規(guī)律,并與基于IASC的太陽(yáng)能熱泵系統(tǒng)進(jìn)行對(duì)比。結(jié)果表明:基于NDASC的太陽(yáng)能熱泵系統(tǒng)的平均COP比基于IASC的太陽(yáng)能熱泵系統(tǒng)提高了18.3%。
[Abstract]:Due to the existence of nano-particles, nano-fluids exhibit different radiation absorption characteristics and heat transfer properties than the base solution, so they become a new and efficient solar radiation absorption material. In this paper, a solar energy collector system is proposed, in which the unabsorbed coating collector tube is used, and the thermal conductivity oil is used as the base liquid to directly serve as the endothermic and heat-carrying heat collecting system. First of all, the spectral transmittance and extinction coefficient of thermal conductive oil-based fluids with different nanoparticles and mass fraction were measured by spectrophotometer. Furthermore, the effects of mass fraction and particle type on the full spectral radiation absorption characteristics of nanofluids were studied. The absorptivity of heat conduction oil / CuO nanofluids with different mass fraction was obtained by combining the integral sphere component. The influence of scattering action of nanoparticles on the absorption characteristics of the fluid was analyzed. The results show that compared with the base solution, the enhanced absorption of solar radiation by nano-fluid is remarkable, and the higher the mass fraction of nanoparticles, the better the absorptivity of solar radiation. Secondly, the mathematical models of heat transfer between NDASC-NDASC-NDASC) and traditional indirect absorption collector (IASC-AC) with absorbing coating are established. Through numerical simulation, the performance of these two methods in different working conditions is compared and analyzed, and the suitable temperature range of the new NDASC is obtained by combining with the experimental test. The results show that under different operating conditions such as solar radiation intensity and ambient temperature, the maximum working temperature of IASC with higher collector efficiency than that of the same structure is corresponding to the maximum operating temperature, I. e., the transition temperature of efficiency, the higher the concentration ratio and the intensity of solar irradiation. The higher the transition temperature of efficiency is, the higher the working temperature of NDASC is. Thirdly, the heat collecting performance of NDASC with two types of heat pipe and U-tube is studied. The mathematical models of heat transfer were established, and the effects of different collector structures and solar radiation intensity on the temperature distribution of fluid in NDASC were simulated by CFD. The results show that NDASC with the same structure has higher central temperature and heat collection efficiency than IASC, and with the increase of solar radiation intensity and tube diameter, the heat collection efficiency of heat-pipe NDASC and U-tube NDASC increases. In addition, the heat pipe NDASC solar energy collecting experiment system is built and compared with the heat pipe IASC device. The experimental results show that the heat collection efficiency of heat pipe NDASC is increased by 20.4than that of heat pipe IASC. Finally, a solar energy heat pump system based on NDASC is proposed using U tube NDASC as heat pump evaporator. The dynamic mathematical model of the heat pump system is established, and the variation law of the parameters of the heat pump system in the process of circulating heating water is simulated and analyzed, and compared with the solar energy heat pump system based on IASC. The results show that the average COP of solar heat pump system based on NDASC is 18. 3% higher than that of solar heat pump system based on IASC.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TU83;TU18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐國(guó)英;陳偉;張小松;孫岳明;;納米流體直接吸收式太陽(yáng)能中溫集熱與熱損分析[J];工程熱物理學(xué)報(bào);2015年05期
2 徐國(guó)英;李凌志;張小松;孫岳明;;太陽(yáng)能集熱用導(dǎo)熱油納米流體的穩(wěn)定性及中溫集熱特性[J];流體機(jī)械;2015年04期
3 徐國(guó)英;李凌志;張小松;孫岳明;;添加不同納米顆粒的導(dǎo)熱油直接吸收集熱實(shí)驗(yàn)性能[J];化工學(xué)報(bào);2014年S2期
4 龔廣杰;王軍;黃鑫炎;郝夢(mèng)龍;張耀明;;槽式太陽(yáng)能真空集熱管的熱損失研究[J];太陽(yáng)能學(xué)報(bào);2011年04期
5 程蓓;;發(fā)展太陽(yáng)能行業(yè)促進(jìn)低碳經(jīng)濟(jì)[J];能源與環(huán)境;2010年05期
6 王亞龍;劉啟斌;隋軍;趙芫樺;宿建峰;李和平;金紅光;;拋物槽式太陽(yáng)能集熱器集熱實(shí)驗(yàn)及模擬研究[J];工程熱物理學(xué)報(bào);2010年08期
7 毛凌波;張仁元;柯秀芳;劉宗建;;納米流體太陽(yáng)集熱器的光熱性能研究[J];太陽(yáng)能學(xué)報(bào);2009年12期
8 趙利勇;胡明輔;楊貞妮;;太陽(yáng)能利用技術(shù)與發(fā)展[J];能源與環(huán)境;2007年04期
9 彭小飛;俞小莉;夏立峰;鐘勛;;納米流體懸浮穩(wěn)定性影響因素[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2007年04期
10 彭小飛;俞小莉;夏立峰;余鳳芹;;納米流體有效熱導(dǎo)率預(yù)測(cè)[J];化工學(xué)報(bào);2007年02期
相關(guān)博士學(xué)位論文 前2條
1 張濤;重力熱管在太陽(yáng)能光電光熱利用中的實(shí)驗(yàn)和理論研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
2 李強(qiáng);納米流體強(qiáng)化傳熱機(jī)理研究[D];南京理工大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 穆麗娟;基于納米流體的直接吸收式太陽(yáng)能集熱系統(tǒng)性能研究[D];上海電力學(xué)院;2011年
2 張英才;納米流體熱管太陽(yáng)能集熱裝置換熱性能的研究[D];長(zhǎng)沙理工大學(xué);2011年
3 蔡潔聰;納米流體對(duì)太陽(yáng)能輻射選擇吸收特性的研究[D];浙江大學(xué);2008年
4 趙玉蘭;CPC熱管式真空管太陽(yáng)能集熱器傳熱特性的研究[D];南京工業(yè)大學(xué);2006年
,本文編號(hào):1945315
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1945315.html