重慶某工程土壤源熱泵地埋管換熱器夏季間歇運(yùn)行模式研究
本文選題:土壤源熱泵 + 地埋管換熱器。 參考:《重慶大學(xué)》2014年碩士論文
【摘要】:隨著土壤源熱泵的快速發(fā)展和廣泛應(yīng)用,在土壤源熱泵系統(tǒng)多年運(yùn)行過程中,其運(yùn)行性能的變化情況成為人們關(guān)注的熱點(diǎn)。隨著系統(tǒng)連續(xù)運(yùn)行,地埋管周圍土壤的物理性質(zhì)是固定的,熱量持續(xù)不斷的被土壤吸收或釋放,地埋管周圍土壤的溫度場隨時(shí)間持續(xù)變化,,造成地埋管換熱器的換熱性能不斷下降,進(jìn)而導(dǎo)致熱泵系統(tǒng)性能的降低以及機(jī)組能耗的增加。土壤源熱泵系統(tǒng)間歇運(yùn)行是通過合理地控制熱泵運(yùn)行的時(shí)間,使土壤處于間歇蓄/放熱狀況,從而促使地埋管換熱器周圍土壤的溫度場得到周期恢復(fù),改善土壤的傳熱,增強(qiáng)地埋管換熱器的換熱能力,以及改善土壤源熱泵系統(tǒng)的運(yùn)行性能。但在實(shí)際工程中,熱泵機(jī)組的啟停比需要根據(jù)建筑實(shí)際負(fù)荷的特點(diǎn)來確定,具有一定的隨機(jī)性。本文針對建筑的非滿載負(fù)荷段,在滿足建筑負(fù)荷的前提下,對土壤源熱泵地埋管換熱器進(jìn)行夏季間歇運(yùn)行模式的研究,該運(yùn)行模式既滿足建筑的負(fù)荷需求,又可以使土壤得到間歇恢復(fù)。 本文以重慶某工程土壤源熱泵系統(tǒng)為研究對象,建立實(shí)測系統(tǒng),測試了實(shí)際運(yùn)行下的地埋管換熱器周圍不同深度的土壤溫度,分析了不同地埋管換熱器周圍土壤的恢復(fù)特性。利用fluent技術(shù)建立了地埋管換熱器三維傳熱模型,并通過實(shí)測數(shù)據(jù)驗(yàn)證其合理性。根據(jù)實(shí)測數(shù)據(jù)分析總結(jié)出的地埋管換熱器周圍土壤的恢復(fù)規(guī)律,制定了土壤源熱泵系統(tǒng)在非滿載負(fù)荷段(0~25%,25~50,50~75%)下的不同地埋管管群運(yùn)行模式。再模擬了原漿回填地埋管分別在不同負(fù)荷段、不同的間歇運(yùn)行工況下的土壤溫度分布情況及出口溫度變化情況。通過對比不同運(yùn)行模式對土壤溫度分布的影響以及機(jī)組的能耗,得出不同非滿載負(fù)荷工況下,相應(yīng)的最佳運(yùn)行模式。 研究表明,各地埋管不同深度地溫恢復(fù)情況大致相同。在前2天的恢復(fù)過程中,各測點(diǎn)的下降幅度較大。第1天的下降幅度占整個(gè)過渡季的58.15%~92.52%,第2天的下降幅度占整個(gè)過渡季的3.82%~11.93%,剩余時(shí)間段逐日各測點(diǎn)溫度下降幅度隨時(shí)間逐漸減緩,占整個(gè)過渡季的0.14%~5.42%。結(jié)合實(shí)際工程,針對3個(gè)管群制定了3種運(yùn)行模式:運(yùn)行模式1,一個(gè)管群運(yùn)行,單個(gè)地埋管換熱器以運(yùn)行1天恢復(fù)2天為周期的重復(fù)運(yùn)行;運(yùn)行模式2,兩個(gè)管群運(yùn)行,單個(gè)地埋管換熱器以運(yùn)行2天恢復(fù)1天為周期的重復(fù)運(yùn)行;運(yùn)行模式3,所有管群運(yùn)行,單個(gè)地埋管換熱器均處于工作日。 通過模擬分析,在同一建筑負(fù)荷段下,當(dāng)?shù)芈窆軗Q熱器全開連續(xù)運(yùn)行時(shí),單個(gè)地埋管管內(nèi)流量較小,土壤溫度及地埋管出口溫度的上升幅度也就較小。但恢復(fù)期較短,其逐日上升幅度較大,進(jìn)而機(jī)組的能耗會越來越大。當(dāng)?shù)芈窆軗Q熱器分群交替運(yùn)行,單個(gè)地埋管換熱器所需要承擔(dān)的負(fù)荷不超過其滿載運(yùn)行時(shí),單個(gè)地埋管管內(nèi)流量較大,土壤溫度及地埋管出口溫度的上升幅度也就較大。但管群交替運(yùn)行,其逐日上升幅度較小,進(jìn)而機(jī)組的能耗上升幅度較小。當(dāng)?shù)芈窆軗Q熱器分群交替運(yùn)行,單個(gè)地埋管換熱器所需要承擔(dān)的負(fù)荷超過其滿載運(yùn)行時(shí),需結(jié)合具體建筑負(fù)荷來確定地埋管換熱器間歇運(yùn)行是否合理。超出比額越大,其地埋管換熱器間歇運(yùn)行的意義越小。 通過模擬分析,該工程在建筑負(fù)荷滿載段前期,建筑負(fù)荷率為25%時(shí),地埋管換熱器間歇運(yùn)行模式宜優(yōu)先選擇運(yùn)行模式1;建筑負(fù)荷率為50%時(shí),地埋管換熱器間歇運(yùn)行模式宜優(yōu)先選擇運(yùn)行模式2;建筑負(fù)荷率為75%時(shí),地埋管換熱器間歇運(yùn)行模式宜優(yōu)先選擇運(yùn)行模式2。 通過模擬分析,在建筑負(fù)荷滿載段后期,建筑負(fù)荷率為75%時(shí),地埋管換熱器間歇運(yùn)行模式宜優(yōu)先選擇運(yùn)行模式2;建筑負(fù)荷率為50%時(shí),地埋管換熱器間歇運(yùn)行模式宜優(yōu)先選擇運(yùn)行模式1;建筑負(fù)荷率為25%時(shí),地埋管換熱器間歇運(yùn)行模式宜優(yōu)先選擇運(yùn)行模式1。
[Abstract]:With the rapid development and wide application of the soil source heat pump, the change of the performance of the soil source heat pump system has become a hot spot of attention. With the continuous operation of the system, the physical properties of the soil around the buried pipe are fixed. The soil is absorbed or released by the soil, and the soil around the buried pipe is the soil. The temperature field continuously changes with time, resulting in the decrease of heat transfer performance of the buried pipe heat exchanger and the decrease of the performance of the heat pump system and the increase of the energy consumption of the unit. The intermittent operation of the soil source heat pump system makes the soil in the intermittent storage / exothermic state by reasonable control of the time of the heat pump operation, thus promoting the heat transfer of the buried pipe. The temperature field around the soil is recovered periodically, the heat transfer of the soil is improved, the heat transfer capacity of the ground heat exchanger is enhanced, and the performance of the soil source heat pump system is improved. However, in the actual project, the start stop ratio of the heat pump unit needs to be determined according to the characteristics of the actual load of the building. In the non full load section, under the premise of satisfying the building load, the summer intermittent operation model of the soil source heat pump heat exchanger is studied. The model not only satisfies the load demand of the building, but also enables the soil to recover intermittently.
In this paper, the soil source heat pump system of a Chongqing project is used to establish the measured system. The soil temperature in different depths around the buried pipe heat exchanger under actual operation is tested and the soil recovery characteristics around the different buried pipe heat exchangers are analyzed. The three-dimensional heat transfer model of the buried pipe heat exchanger is established by using the fluent technology and the measurement is measured. The data is proved to be reasonable. According to the measured data, the restoration law of soil around the buried pipe heat exchanger is analyzed, and the operation mode of different buried pipe group under the non full load load section (0~25%, 25~50,50~75%) is formulated. The distribution of soil temperature and the change of the temperature of the outlet under the operating conditions are compared. By comparing the effects of different operating modes on the distribution of soil temperature and the energy consumption of the units, the corresponding optimal operation modes are obtained under different load conditions.
The study shows that the ground temperature recovery of different depths in different depths is approximately the same. During the first 2 days of recovery, the decrease of each test point is larger. The decrease of the first days is 58.15%~92.52% in the whole transition season, and the decrease of the second days is 3.82%~11.93% in the whole transition season. Gradually slowing down, accounting for the 0.14%~5.42%. combined with the actual project in the whole transition season, 3 operating modes are formulated for 3 tube groups: operation mode 1, a tube group running, a single buried tube heat exchanger to run for 2 days for 1 days, running mode 2, two tube groups running, and a single buried tube heat exchanger for 2 days to recover for 1 days. Cycle repetition operation; operation mode 3, all pipe groups running, and single ground heat exchangers are on working days.
Through the simulation analysis, under the same building load section, when the local pipe heat exchanger is running continuously, the flow of the single buried pipe is smaller, the soil temperature and the increase of the outlet temperature of the buried pipe are smaller. But the recovery period is shorter, and the increase of the energy consumption of the unit will become larger and larger. In alternate operation, the load required by a single buried tube heat exchanger is not more than its full load, the flow of the single buried pipe is larger, the temperature of the soil and the outlet temperature of the buried pipe are increased greatly. However, the daily rise of the pipe group is small and the energy consumption of the unit is small. When the load of a single buried tube heat exchanger is more than its full load, it is necessary to combine the concrete load to determine whether the intermittent operation of the buried pipe heat exchanger is reasonable. The greater the excess ratio, the smaller the significance of the intermittent operation of the buried pipe heat exchanger.
Through the simulation analysis, when the construction load rate is 25%, the intermittent operation mode of the buried pipe heat exchanger should choose the operation mode 1 when the building load rate is 25%. When the building load rate is 50%, the intermittent operation mode of the buried pipe heat exchanger should choose the operating mode 2 first; the ground heat exchanger is operated intermittently when the construction load rate is 75%. Patterns should be preferred to run mode 2.
Through the simulation analysis, when the building load rate is 75%, the intermittent operation mode of the buried pipe heat exchanger should choose the operation mode 2 when the building load rate is 75%. When the building load rate is 50%, the intermittent operation mode of the buried pipe heat exchanger should choose the operation mode 1 first; when the building load rate is 25%, the intermittent operation mode of the buried pipe heat exchanger is suitable. Priority selection operation mode 1.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TU83
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐志偉;時(shí)曉燕;黃俊惠;王曉濤;;地源熱泵U型管地下?lián)Q熱器的數(shù)值模擬[J];北京工業(yè)大學(xué)學(xué)報(bào);2006年01期
2 曲云霞,張林華,方肇洪,李安桂;地源熱泵系統(tǒng)防凍液的選擇[J];節(jié)能與環(huán)保;2002年08期
3 王慶一;;中國能源資源狀況評析(上)[J];節(jié)能與環(huán)保;2008年05期
4 王慶一;;中國能源資源狀況評析(下)[J];節(jié)能與環(huán)保;2008年06期
5 張昆峰,馬芳梅,金六一,湯建華;土壤熱源與熱泵聯(lián)接運(yùn)行冬季工況的試驗(yàn)研究[J];華中理工大學(xué)學(xué)報(bào);1996年01期
6 劉憲英,胡鳴明,魏唐棣;地?zé)嵩礋岜玫叵侣窆軗Q熱器傳熱模型的綜述[J];重慶建筑大學(xué)學(xué)報(bào);1999年04期
7 ;天津市建筑應(yīng)用可再生能源項(xiàng)目調(diào)查報(bào)告[J];中國建設(shè)信息供熱制冷;2007年07期
8 萬仁里;談地源熱泵[J];建筑熱能通風(fēng)空調(diào);2002年01期
9 曾和義,刁乃仁,方肇洪;豎直埋管地?zé)釗Q熱器鉆孔內(nèi)的熱阻[J];煤氣與熱力;2003年03期
10 史立山;中國能源現(xiàn)狀分析和可再生能源發(fā)展規(guī)劃[J];可再生能源;2004年05期
本文編號:1888081
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1888081.html