基于無(wú)擾動(dòng)狀態(tài)的混凝土損傷本構(gòu)關(guān)系的研究
本文選題:混凝土 + 二元擾動(dòng); 參考:《沈陽(yáng)建筑大學(xué)》2014年碩士論文
【摘要】:本文主要研究基于無(wú)擾動(dòng)狀態(tài)的混凝土彈塑性損傷本構(gòu)關(guān)系,通過(guò)ANSYS軟件對(duì)混凝土的力學(xué)行為進(jìn)行模擬,并結(jié)合MATLAB軟件對(duì)有限元模擬的結(jié)果進(jìn)行繪圖分析,主要工作有以下幾方面:闡述了二元擾動(dòng)的概念及材料改變的機(jī)理,提出了各種材料的二元擾動(dòng)方程,對(duì)擾動(dòng)進(jìn)行了全面詳細(xì)的解釋。利用混凝土單軸拉伸和壓縮的試驗(yàn)數(shù)據(jù),繪制混凝土應(yīng)力-應(yīng)變曲線(xiàn),并通過(guò)觀察應(yīng)力-應(yīng)變曲線(xiàn)的變化規(guī)律,將其公式化,主要分為強(qiáng)化階段和軟化階段,并且軟化階段存在拐點(diǎn)。詳細(xì)分析了五參數(shù)準(zhǔn)則,包括推導(dǎo)過(guò)程、偏平面和靜水面的特點(diǎn)以及五參數(shù)準(zhǔn)則中參數(shù)的確定。提出了混凝土彈塑性損傷本構(gòu)理論,包括應(yīng)力張量分解理論、混凝土本構(gòu)關(guān)系以及基于塑性應(yīng)變的損傷加載準(zhǔn)則。提出了三種代表性的無(wú)擾動(dòng)應(yīng)力-應(yīng)變曲線(xiàn)形式,引進(jìn)擾動(dòng),通過(guò)分析塑性應(yīng)變與擾動(dòng)之間的關(guān)系,將其擬合成Weibull曲線(xiàn),并結(jié)合有限元模擬的結(jié)果分析,得出三種無(wú)擾動(dòng)應(yīng)力-應(yīng)變曲線(xiàn)均合理的結(jié)論。將無(wú)擾動(dòng)應(yīng)力-應(yīng)變曲線(xiàn)公式化,利用簡(jiǎn)單的五參數(shù)準(zhǔn)則建立有限元模型,模擬混凝土單軸受拉和單軸受壓,利用提出的混凝土彈塑性損傷本構(gòu)理論對(duì)模擬結(jié)果進(jìn)行分析,分析數(shù)據(jù)與混凝土表觀應(yīng)力-應(yīng)變曲線(xiàn)有很好的吻合性,從而驗(yàn)證了該理論對(duì)于一維混凝土力學(xué)行為的適用性。利用一般的五參數(shù)準(zhǔn)則,建立混凝土T型梁模型,在有限元模型的右端面施加向下的均布荷載,使混凝土的受力狀態(tài)是多向的。查看有限元模擬結(jié)果的應(yīng)力應(yīng)變圖,得出固定端是受力構(gòu)件的危險(xiǎn)截面。通過(guò)MATLAB繪制危險(xiǎn)截面主應(yīng)力分布曲面圖的方法,找出截面的危險(xiǎn)點(diǎn)是上部節(jié)點(diǎn)和下部節(jié)點(diǎn)。選取有限元模型固定端截面的危險(xiǎn)點(diǎn),這些節(jié)點(diǎn)是多向受力的,屬于一般應(yīng)力狀態(tài)下的節(jié)點(diǎn)。對(duì)于一般應(yīng)力狀態(tài)下節(jié)點(diǎn)的分析主要有:分析其應(yīng)力、應(yīng)變和塑性應(yīng)變,利用應(yīng)力張量分解理論,將應(yīng)力張量分解為正負(fù)兩部分,分解結(jié)果與混凝土彈塑性分析得出的受拉損傷和受壓損傷一致,從而驗(yàn)證了混凝土彈塑性損傷本構(gòu)關(guān)系同樣適用于一般應(yīng)力狀態(tài)下的混凝土分析。利用五參數(shù)準(zhǔn)則,通過(guò)對(duì)一維和多維的混凝土力學(xué)行為進(jìn)行有限元分析,驗(yàn)證了本文提出的基于無(wú)擾動(dòng)狀態(tài)的混凝土彈塑性損傷本構(gòu)關(guān)系的合理性和適用性。
[Abstract]:In this paper, the elastoplastic damage constitutive relation of concrete in undisturbed state is studied, the mechanical behavior of concrete is simulated by ANSYS software, and the result of finite element simulation is plotted and analyzed with MATLAB software. The main work is as follows: the concept of binary perturbation and the mechanism of material change are expounded, the binary perturbation equations of various materials are put forward, and the perturbation is explained in detail. Based on the experimental data of uniaxial tension and compression of concrete, the stress-strain curve of concrete is drawn, and the stress-strain curve is formulated by observing the variation law of stress-strain curve, which is divided into strengthening stage and softening stage. And there is an inflection point in the softening stage. The five-parameter criterion is analyzed in detail, including the derivation process, the characteristics of the deviation plane and the static water surface, and the determination of the parameters in the five-parameter criterion. The elastic-plastic damage constitutive theory of concrete is put forward, including stress Zhang Liang decomposition theory, concrete constitutive relation and damage loading criterion based on plastic strain. In this paper, three typical undisturbed stress-strain curves are proposed. By introducing perturbation, by analyzing the relationship between plastic strain and perturbation, the pseudo-synthetic Weibull curves are synthesized, and the results of finite element simulation are analyzed. It is concluded that all three kinds of undisturbed stress-strain curves are reasonable. The undisturbed stress-strain curve is formulated and the finite element model is established by using the simple five-parameter criterion to simulate the uniaxial tension and uniaxial compression of concrete. The simulation results are analyzed by using the proposed elastoplastic damage constitutive theory of concrete. The analytical data are in good agreement with the apparent stress-strain curve of concrete, which verifies the applicability of the theory to the mechanical behavior of one-dimensional concrete. Using the general five-parameter criterion, the concrete T-beam model is established, and the downward uniform load is applied on the right end of the finite element model, which makes the stress state of concrete multi-directional. The stress-strain diagram of the finite element simulation results shows that the fixed end is the dangerous section of the bearing member. By the method of drawing the surface diagram of the principal stress distribution of the dangerous section by MATLAB, it is found that the dangerous point of the section is the upper node and the lower node. The finite element model selected the dangerous points of the section at the fixed end. These joints are multi-directional and belong to the joints under general stress state. The analysis of the joint under general stress state mainly includes: analyzing its stress, strain and plastic strain, using the theory of stress Zhang Liang decomposition, decomposing the stress Zhang Liang into two parts: positive and negative. The decomposition results are consistent with the tensile damage and compressive damage obtained from the elastic-plastic analysis of concrete, which verifies that the constitutive relationship of elastoplastic damage of concrete is also applicable to the analysis of concrete under general stress state. By using the five-parameter criterion, the finite element analysis of one-dimensional and multi-dimensional concrete mechanical behavior is carried out, which verifies the rationality and applicability of the elastoplastic damage constitutive relationship of concrete based on the non-perturbed state proposed in this paper.
【學(xué)位授予單位】:沈陽(yáng)建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TU528
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘俊濤;李爭(zhēng)容;;室內(nèi)配制混凝土單軸試驗(yàn)全應(yīng)力-應(yīng)變曲線(xiàn)試驗(yàn)研究[J];價(jià)值工程;2014年12期
2 王偉;凌華;孫斌祥;;軟土動(dòng)應(yīng)力-應(yīng)變曲線(xiàn)復(fù)合指數(shù)-正弦模型[J];水力發(fā)電學(xué)報(bào);2011年06期
3 張為公;測(cè)定塑性應(yīng)力的一種圖解法及應(yīng)力-應(yīng)變曲線(xiàn)修正[J];南京航空航天大學(xué)學(xué)報(bào);1993年02期
4 林宗良;段峰濤;洪錦祥;萬(wàn)峗;;疲勞變形曲線(xiàn)與靜載應(yīng)力-應(yīng)變曲線(xiàn)對(duì)應(yīng)關(guān)系[J];江蘇建筑;2011年06期
5 曹耿;阿肯江.托呼提;;土坯砌體單軸受壓應(yīng)力-應(yīng)變曲線(xiàn)試驗(yàn)研究[J];低溫建筑技術(shù);2011年06期
6 陳紹炳;蔣家?jiàn)^;;應(yīng)用內(nèi)應(yīng)變測(cè)量技術(shù)測(cè)定混凝土應(yīng)力-應(yīng)變曲線(xiàn)的研究[J];上海建材學(xué)院學(xué)報(bào);1990年04期
7 代東亮;布欣;王新武;;鋼材高溫下應(yīng)力-應(yīng)變曲線(xiàn)研究[J];洛陽(yáng)理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2011年01期
8 章露露;許順德;張帥;茅鐵軍;;混凝土應(yīng)力-應(yīng)變曲線(xiàn)的發(fā)展機(jī)理及數(shù)學(xué)描述[J];中國(guó)新技術(shù)新產(chǎn)品;2010年02期
9 孫志剛;苗艷;宋迎東;;考慮基體開(kāi)裂的陶瓷基復(fù)合材料應(yīng)力-應(yīng)變曲線(xiàn)模擬方法及驗(yàn)證[J];航空動(dòng)力學(xué)報(bào);2012年09期
10 姜福田;混凝土拉伸裂縫擴(kuò)展和應(yīng)力-應(yīng)變曲線(xiàn)[J];工業(yè)建筑;1986年02期
相關(guān)碩士學(xué)位論文 前3條
1 吳博;混凝土應(yīng)力-應(yīng)變曲線(xiàn)試驗(yàn)研究與隨機(jī)損傷本構(gòu)模型[D];西安建筑科技大學(xué);2015年
2 楊玉霞;基于無(wú)擾動(dòng)狀態(tài)的混凝土損傷本構(gòu)關(guān)系的研究[D];沈陽(yáng)建筑大學(xué);2014年
3 曹鵬;混凝土塑性損傷模型及其ABAQUS子程序開(kāi)發(fā)[D];沈陽(yáng)工業(yè)大學(xué);2009年
,本文編號(hào):1868183
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1868183.html