地面防護工程抗爆復(fù)合材料與結(jié)構(gòu)研究
本文選題:雙摻混凝土 + 聚氨酯泡沫鋁; 參考:《中國礦業(yè)大學(xué)》2014年博士論文
【摘要】:面對大當(dāng)量殺傷性常規(guī)武器的爆炸破壞效應(yīng),地面防護工程的抗力設(shè)計和施工技術(shù)都已經(jīng)不能滿足工程防護的要求,而地面防護工程沒有地下防護工程可以提供的堅實厚重的巖土層作為防護層,完全依靠自身結(jié)構(gòu)抵抗武器破壞效應(yīng)。因此,選取當(dāng)前防護工程領(lǐng)域內(nèi)亟待解決的前沿課題——地面防護工程的抗爆技術(shù)研究作為論文選題。針對地面防護工程的抗爆防護技術(shù),對雙摻混凝土、聚氨酯泡沫鋁復(fù)合材料和聚氨酯蜂窩紙板復(fù)合材料等三種復(fù)合材料進行研究,從材料強度、吸能特性、本構(gòu)關(guān)系和復(fù)合吸能抗爆結(jié)構(gòu)型式等四方面進行了研究,提高地面防護工程的抗爆防護能力。主要取得以下研究進展: (1)研究摻加硅粉和粉煤灰混凝土的動態(tài)抗壓強度及最佳摻量。針對當(dāng)前地面防護工程結(jié)構(gòu)使用的普通C50混凝土,在節(jié)約資金、減輕自重的前提下提高混凝土的強度,通過SHPB動態(tài)沖擊試驗發(fā)現(xiàn):雙摻混凝土的動態(tài)抗壓強度從120MPa提高到180MPa,顯著提高了結(jié)構(gòu)抗力。通過正交試驗分析方法,找到不同沖擊條件下的最佳摻量,低速沖擊的最優(yōu)組合為J2G3F1S3;中速沖擊的最優(yōu)組合為J2G2F1S2;高速沖擊的最優(yōu)組合為J1G3F1S3。 (2)研究聚氨酯泡沫鋁復(fù)合材料力學(xué)性能和吸能性能。通過對聚氨酯泡沫鋁結(jié)構(gòu)的靜、動態(tài)力學(xué)性能的研究,得出結(jié)論:聚氨酯泡沫鋁的屈服強度與應(yīng)變率、相對密度和聚氨酯含量成正比。隨著相對密度增加和聚氨酯含量增加,屈服強度均可提高10%以上。隨著應(yīng)變率的增加,泡沫鋁的屈服強度可提高45%以上,聚氨酯泡沫鋁的屈服強度可提高30%以上,因此認(rèn)為,泡沫鋁和聚氨酯泡沫鋁具有非常明顯的應(yīng)變率效應(yīng)。聚氨酯含量的提高可使聚氨酯泡沫鋁吸能量提高50%以上,吸能效率提高30%以上。聚氨酯泡沫鋁的吸能效率可以達到0.7,是一種很好的吸能材料。 (3)研究聚氨酯蜂窩紙板復(fù)合材料力學(xué)性能和吸能性能。填充聚氨酯材料的蜂窩紙板在靜態(tài)受壓時使本來會有的失穩(wěn)階段消失,從而提高了蜂窩紙板復(fù)合材料的彈性極限水平(從0.2240MPa提高到0.5422MPa,增長了41.3%)和屈服應(yīng)力(約為填充前的3-4倍),提升了蜂窩紙板材料的緩沖性能。復(fù)合材料靜、動態(tài)吸能性能大幅提高,吸能量約為復(fù)合前兩種材料吸能量總和的1-2倍;吸能效率E和理想吸能效率I均在0.6以上,是很好的緩沖吸能材料。 (4)建立抗爆復(fù)合材料的動態(tài)本構(gòu)模型;诂F(xiàn)有的研究基礎(chǔ),分別對以上三種材料建立了動態(tài)本構(gòu)模型。分別建立了雙摻混凝土基于ZWT本構(gòu)模型的低應(yīng)變率本構(gòu)模型和非線性條件下隨機損傷本構(gòu)模型: 建立了聚氨酯泡沫鋁基于硬質(zhì)聚氨酯泡沫塑料本構(gòu)關(guān)系的包含相對密度、應(yīng)變、應(yīng)變率和聚氨酯含量等影響因素的泡沫金屬本構(gòu)模型: 建立了聚氨酯蜂窩紙板基于Sherwood-Frost本構(gòu)關(guān)系的本構(gòu)模型: (5)獲得不同抗爆結(jié)構(gòu)的最優(yōu)化組合型式。通過LS-DYNA有限元程序?qū)AFFC-聚氨酯泡沫鋁復(fù)合結(jié)構(gòu)進行抗爆吸能數(shù)值計算,對復(fù)合結(jié)構(gòu)進行優(yōu)化分析。結(jié)果表明:同等抗爆條件下,SAFFC(50cm)-聚氨酯泡沫鋁(20cm)-SAFFC(50cm)的抗爆性能為最佳。對填充SAFFC、聚氨酯泡沫鋁和聚氨酯蜂窩紙板的三種鋼板防護門結(jié)構(gòu)進行抗爆吸能計算,優(yōu)化分析在不同條件下的復(fù)合結(jié)構(gòu)抗爆性能。結(jié)果表明:聚氨酯蜂窩紙板的自重較輕,,便于維護,但爆炸后防護門變形較大,因此適于防護等級不高的情況;防護等級較高時,聚氨酯泡沫鋁首選,混凝土也可以考慮,但是考慮二次打擊的情況下,混凝土填充物因破碎不能繼續(xù)使用。
[Abstract]:In the face of the explosion damage effect of heavy duty conventional weapons, the resistance design and construction technology of ground protection engineering can not meet the requirements of engineering protection, but there is no ground protection engineering which can provide a solid thick rock and soil layer as protective layer, completely relying on its own structure to resist the effect of weapon damage. Therefore, the research on the anti detonation technology of ground protection engineering is selected as the topic of this paper, which is the frontier subject in the field of protection engineering. Three kinds of composite materials, such as double concrete, polyurethane foam aluminum composite and polyurethane honeycomb paper plate composite materials, are studied for the anti detonation technology of ground protection engineering. Four aspects of material strength, energy absorption characteristics, constitutive relation and composite energy absorbing and antiknock structural type are studied to improve the anti explosion protection ability of ground protection engineering. The following research progress is made mainly:
(1) to study the dynamic compressive strength and the optimum content of concrete mixed with silica powder and fly ash concrete. According to the common C50 concrete used in the current ground protection engineering structure, the strength of concrete is improved under the premise of saving money and reducing self weight. The dynamic compressive strength of the concrete is improved from the 120MPa to the dynamic compressive strength of the concrete through the SHPB dynamic impact test. The optimum combination of different impact conditions is found by orthogonal test. The optimal combination of low velocity impact is J2G3F1S3, the optimal combination of medium speed impact is J2G2F1S2, and the optimal combination of high speed impact is J1G3F1S3..
(2) study the mechanical properties and energy absorption properties of polyurethane foam aluminum composites. Through the study of the static and dynamic mechanical properties of the structure of polyurethane foam aluminum, the conclusion is that the yield strength and strain rate of polyurethane foam aluminum are proportional to the density of the polyurethane. With the increase of the density of the phase and the increase of the content of the polyurethane, the yield strength is increased. With the increase of the strain rate, the yield strength of aluminum foam can be increased by more than 45%, the yield strength of polyurethane foam aluminum can be increased by more than 30%. Therefore, it is believed that the foam aluminum and polyurethane foam aluminum have a very obvious strain rate effect. The increase of polyurethane content can increase the energy absorption of polyurethane foam by more than 50%, and the absorption of polyurethane foam can be increased by more than 50%. The energy efficiency can be increased by more than 30%. The energy absorption efficiency of polyurethane foam aluminum can reach 0.7, which is a good energy absorbing material.
(3) study the mechanical properties and energy absorption properties of the polyurethane honeycomb paperboard composites. The honeycomb paperboard filled with polyurethane material disappears in the static compression stage, and thus improves the elastic limit level of the honeycomb paperboard composite (increased from 0.2240MPa to 0.5422MPa, increased by 41.3%) and yield stress (about the pre filling). The cushioning performance of the honeycomb paperboard material is enhanced by 3-4 times). The static energy absorption performance of the composite material is greatly improved, the energy absorption is about 1-2 times the sum of the energy absorption of the two pre composite materials, and the energy absorption efficiency E and the ideal energy absorption efficiency I are all above 0.6, which is a good cushioning energy absorbing material.
(4) the dynamic constitutive model of anti explosive composites is established. Based on the existing research basis, the dynamic constitutive models of the above three kinds of materials are established respectively. The constitutive model of low strain rate based on the ZWT constitutive model of double concrete and the stochastic damage constitutive model under the nonlinear condition are established respectively.
The constitutive model of polyurethane foam based on the constitutive relation of rigid polyurethane foam, including relative density, strain, strain rate and polyurethane content, was established.
The constitutive model of polyurethane honeycomb paperboard based on Sherwood-Frost constitutive relation is established.
(5) obtain the optimal combination pattern of different antiknock structures. Through the LS-DYNA finite element program, the anti detonation energy absorption of SAFFC- polyurethane foam aluminum composite structure is calculated and the composite structure is optimized. The results show that the best anti detonation performance of SAFFC (50cm) - polyurethane foam aluminum (20cm) -SAFFC (50cm) is the best under the same anti explosion condition. Three kinds of steel plate protective door structure filled with SAFFC, polyurethane foam aluminum and polyurethane honeycomb paperboard were used to calculate the anti explosion energy absorption. The anti explosion performance of the composite structure under different conditions was optimized. The results showed that the self weight of the polyurethane honeycomb paperboard was lighter and convenient for maintenance, but the deformation of the protection door was large, so it was suitable for the low protection grade. When the protective grade is high, the polyurethane foam aluminum is first preferred and the concrete can be considered, but in the case of two strikes, the concrete fill can not continue to be used because of breakage.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TU761.1;TU599
【參考文獻】
相關(guān)期刊論文 前10條
1 劉穎芳;劉仁輝;石少卿;汪敏;趙永兵;;應(yīng)用泡沫鋁降低地下爆炸沖擊波的數(shù)值分析[J];地下空間與工程學(xué)報;2008年02期
2 謝永亮;王瑞;林振榮;盧玉松;陳磊;;泡沫鋁/改性環(huán)氧樹脂復(fù)合材料壓縮力學(xué)性能的試驗研究[J];兵器材料科學(xué)與工程;2010年05期
3 柳錦春,方秦,張亞棟,趙曉兵;爆炸荷載作用下內(nèi)襯鋼板的混凝土組合結(jié)構(gòu)的局部效應(yīng)分析[J];兵工學(xué)報;2004年06期
4 劉彥;谷鴻平;黃風(fēng)雷;;柱形裝藥在混凝土中爆炸破壞效應(yīng)數(shù)值模擬研究[J];北京理工大學(xué)學(xué)報;2010年06期
5 李秀地;鄭穎人;徐干成;;爆炸荷載作用下地下結(jié)構(gòu)的震塌破壞模型研究[J];爆破;2006年01期
6 周風(fēng)華,王札立,胡時勝;有機玻璃在高應(yīng)變率下的損傷型非線性粘彈性本構(gòu)關(guān)系及破壞準(zhǔn)則[J];爆炸與沖擊;1992年04期
7 胡時勝,王道榮;沖擊載荷下混凝土材料的動態(tài)本構(gòu)關(guān)系[J];爆炸與沖擊;2002年03期
8 曾斐,潘藝,胡時勝;泡沫鋁緩沖吸能評估及其特性[J];爆炸與沖擊;2002年04期
9 柳錦春,方秦,龔自明,范俊余;爆炸荷載作用下鋼筋混凝土梁的動力響應(yīng)及破壞形態(tài)分析[J];爆炸與沖擊;2003年01期
10 王永剛,胡時勝,王禮立;爆炸荷載下泡沫鋁材料中沖擊波衰減特性的實驗和數(shù)值模擬研究[J];爆炸與沖擊;2003年06期
本文編號:1859682
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1859682.html