天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

被動(dòng)式環(huán)境調(diào)控策略及技術(shù)集成應(yīng)用研究

發(fā)布時(shí)間:2018-04-14 13:02

  本文選題:被動(dòng)式環(huán)境調(diào)控 + 變色太陽(yáng)墻 ; 參考:《大連理工大學(xué)》2014年博士論文


【摘要】:在整個(gè)低能耗建筑設(shè)計(jì)過(guò)程中充分考慮建筑本身的環(huán)境調(diào)控作用,是從根本上降低建筑能耗的重要途徑。最大限度地利用自然能源潛能,通過(guò)合理的建筑自身設(shè)計(jì)實(shí)現(xiàn)較舒適的自然運(yùn)行室內(nèi)熱環(huán)境是被動(dòng)式環(huán)境調(diào)控建筑的基本設(shè)計(jì)理念。目前關(guān)于被動(dòng)式環(huán)境調(diào)控的國(guó)內(nèi)外相關(guān)研究多集中在建筑構(gòu)件、材料和調(diào)控技術(shù)等相對(duì)分散的領(lǐng)域,同時(shí)存在調(diào)控技術(shù)性能不完善,缺乏技術(shù)集成應(yīng)用較全面的熱特性研究成果,無(wú)法快速預(yù)測(cè)被動(dòng)式環(huán)境調(diào)控設(shè)計(jì)對(duì)建筑熱環(huán)境的定量影響等問(wèn)題,上述原因制約了被動(dòng)式環(huán)境調(diào)控建筑的應(yīng)用與發(fā)展。因此,開(kāi)展被動(dòng)式環(huán)境調(diào)控技術(shù)及其集成應(yīng)用的研究,為被動(dòng)式環(huán)境調(diào)控建筑設(shè)計(jì)提供技術(shù)及理論支撐,具有重要的現(xiàn)實(shí)意義及學(xué)術(shù)價(jià)值。 本文以寒冷地區(qū)氣候適應(yīng)性調(diào)控策略、變色太陽(yáng)墻技術(shù)的研制及建筑集成應(yīng)用為核心,通過(guò)實(shí)驗(yàn)及理論研究,深入探討了基于變色太陽(yáng)墻作用下,建筑熱響應(yīng)特性、熱工性能改善和自然運(yùn)行室溫快速預(yù)測(cè)方法等理論和技術(shù)問(wèn)題,得到的主要成果如下: 首先,引入平衡點(diǎn)溫度作為評(píng)價(jià)參數(shù),得到耦合太陽(yáng)能集熱構(gòu)件建筑南外墻窗墻比優(yōu)化取值范圍以及不同被動(dòng)式太陽(yáng)能采暖氣候區(qū)的太陽(yáng)能利用潛力范圍。研究結(jié)果表明,在大連氣候條件下,采用集熱構(gòu)件后建筑的太陽(yáng)能利用潛力提升了49.3%。同時(shí),為讓冬季太陽(yáng)能利用潛力最大化并防止夏季過(guò)熱,大連地區(qū)耦合集熱構(gòu)件南墻的窗墻比優(yōu)化取值范圍在0.2-0.35之間(大連地區(qū)居住建筑節(jié)能65%設(shè)計(jì)標(biāo)準(zhǔn)推薦值:≤0.45)。 其次,提出變色太陽(yáng)墻、光電風(fēng)機(jī)和溫控風(fēng)門(mén)等自動(dòng)控制構(gòu)件聯(lián)合運(yùn)行的被動(dòng)式環(huán)境調(diào)控建筑模式,解決了既有太陽(yáng)能熱利用技術(shù)存在夏季過(guò)熱、運(yùn)行過(guò)程手動(dòng)控制不方便等問(wèn)題。以該模式為原型建造足尺大示范住宅并構(gòu)建了計(jì)算機(jī)數(shù)據(jù)自動(dòng)巡回監(jiān)測(cè)系統(tǒng),通過(guò)對(duì)連續(xù)兩年實(shí)測(cè)結(jié)果的分析,得到變色太陽(yáng)墻動(dòng)態(tài)熱特性及技術(shù)集成建筑的熱響應(yīng)變化規(guī)律。研究結(jié)果表明,采用擠塑板保溫、風(fēng)機(jī)安裝在回風(fēng)口并采用連續(xù)運(yùn)行的熱效率最佳,達(dá)到56.8%;冬季晴朗天氣下利用變色太陽(yáng)墻采暖可使室溫維持在10℃~17℃;夏季通過(guò)改變變色太陽(yáng)墻集熱板顏色及開(kāi)啟外部通風(fēng)口可使室內(nèi)空氣溫度維持在24.8~26.6℃。 第三,基于考慮溫度分區(qū)及耦合集熱構(gòu)件復(fù)合墻體的動(dòng)態(tài)傳熱過(guò)程,依據(jù)動(dòng)態(tài)熱網(wǎng)絡(luò)法耦合反應(yīng)系數(shù)法,建立了變色太陽(yáng)墻建筑動(dòng)態(tài)傳熱過(guò)程計(jì)算模型。該模型充分考慮了集熱構(gòu)件空氣間層與室內(nèi)空氣的對(duì)流換熱、重質(zhì)墻體蓄放熱等動(dòng)態(tài)熱響應(yīng)過(guò)程。經(jīng)實(shí)驗(yàn)驗(yàn)證,計(jì)算結(jié)果與實(shí)驗(yàn)結(jié)果的誤差在10%以下。 第四,基于提出的傳熱計(jì)算模型,考慮耦合集熱部件墻體的熱阻變化,解析得到確定被動(dòng)式環(huán)境調(diào)控建筑南墻外保溫層最佳厚度的通用表達(dá)式,并提出熱時(shí)間常數(shù)及內(nèi)墻熱物性參數(shù)等優(yōu)化閾值范圍。通過(guò)對(duì)外保溫層最佳厚度解析表達(dá)式的分析,得到其影響因素主要為采暖/空調(diào)度日數(shù)、折現(xiàn)率、材料價(jià)格及導(dǎo)熱系數(shù)等,為便于工程應(yīng)用,提出了保溫層最佳厚度與材料導(dǎo)熱系數(shù)的關(guān)聯(lián)式。同時(shí),從提高建筑熱穩(wěn)定性目的出發(fā),以室內(nèi)外空氣振幅比和墻體內(nèi)壁面溫度為評(píng)價(jià)參數(shù),分別提出內(nèi)墻導(dǎo)熱系數(shù)、比熱容以及厚度等參數(shù)的優(yōu)化取值范圍。 最后,針對(duì)目前被動(dòng)式環(huán)境調(diào)控建筑室內(nèi)熱環(huán)境難以快速預(yù)測(cè)及輔助設(shè)備系統(tǒng)設(shè)計(jì)參數(shù)取值無(wú)依據(jù)等問(wèn)題,基于變色太陽(yáng)墻應(yīng)用建筑熱過(guò)程實(shí)驗(yàn)數(shù)據(jù)及相似準(zhǔn)則,提出可快速預(yù)測(cè)在不同氣候區(qū)及建筑設(shè)計(jì)條件下被動(dòng)式環(huán)境調(diào)控建筑的自然運(yùn)行室溫公式。將集熱部件供熱量轉(zhuǎn)變?yōu)殡S太陽(yáng)輻照度變化的室內(nèi)得熱量項(xiàng),故依據(jù)該公式可計(jì)算得到隨室外氣象參數(shù)變化的動(dòng)態(tài)室溫波動(dòng),為被動(dòng)式設(shè)計(jì)的定量調(diào)控效果及匹配輔助設(shè)備系統(tǒng)提供理論支撐。 本文通過(guò)對(duì)氣候適應(yīng)性分析、技術(shù)改進(jìn)及建筑集成應(yīng)用研究到室內(nèi)熱環(huán)境預(yù)測(cè)方法的提出,形成獨(dú)立完整的被動(dòng)式環(huán)境調(diào)控研究方法,為被動(dòng)式環(huán)境調(diào)控技術(shù)的集成應(yīng)用提供了定量評(píng)價(jià)參數(shù)及設(shè)計(jì)依據(jù),進(jìn)一步對(duì)推動(dòng)被動(dòng)式環(huán)境調(diào)控建筑的普及應(yīng)用、制訂國(guó)家相關(guān)設(shè)計(jì)規(guī)范奠定了理論基礎(chǔ)。
[Abstract]:Give full consideration to the environmental regulation of the building itself in the whole design process of low energy building, is an important way to reduce building energy consumption fundamentally. To maximize the use of natural energy potential, through reasonable design and implementation of building its own natural operation more comfortable indoor thermal environment is the basic design idea of building environmental regulation. At present about the passive passive climate control related research at home and abroad focused on building components, materials and control technology of relatively scattered areas exist at the same time performance control technology is not perfect, the lack of research results of thermal characteristics of technology integration application comprehensively, can predict passive environmental control design of building thermal environment influence quantitative fast, the reason for restricting the application and development of the construction of passive climate control. Therefore, to carry out the technology of passive environmental control and application integration. It is of great practical significance and academic value to provide technical and theoretical support for the passive environmental regulation and control of architectural design.
Based on the climate adaptability control strategy of cold area, color solar wall technology development and building integrated application as the core, through the experimental and theoretical research, in-depth study based on the discoloration of the solar wall under the action of thermal response characteristics of building methods, theory and technology of the rapid prediction of thermal performance improvement and natural operation at room temperature, the main results are as follows:
First of all, the introduction of the balanced point temperature as evaluation parameters, the coupled solar collector component south wall window wall ratio optimal range and different climate zones of passive solar heating utilization potential of solar energy range. The results show that under the climatic conditions of Dalian, using the collector component after using the building to enhance the potential of solar energy 49.3%. at the same time, to make maximum utilization potential of solar energy in winter and summer to prevent overheating, Dalian area coupled thermal component south wall window wall ratio optimization in the 0.2-0.35 range (Dalian area residential building energy-saving 65% of the design standards recommended values: less than or equal to 0.45).
Secondly, the color of solar wall, mode of passive climate control building photoelectric fan and temperature control air door automatic control component joint operation, solves the problems of solar heat utilization technology in summer overheating, operation process of manual control is not convenient. In this mode the original type construction and the construction of the full-scale demonstration residential automatic monitoring the system of computer data, through the analysis of the measured results for two consecutive years, the change law in response to discoloration of thermal dynamic characteristics of solar wall and building thermal technology integration. The results show that the extruded insulation board, the fan is installed in the air outlet and the continuous operation of the best thermal efficiency, reaching 56.8%; sunny winter weather the sun color wall heating can make the room temperature maintained at 10 to 17 DEG C; summer by change the color solar wall collector color and open external vents can make indoor air temperature The degree is maintained at 24.8 ~ 26.6 degrees centigrade.
Third, the dynamic heat transfer process considering temperature zoning and coupled thermal components of composite wall based on thermal network method based on coupling dynamic response coefficient method, established the calculation model of dynamic heat transfer process of building wall color sun. This model fully considers the convection air collector component of air layer and indoor heat exchanger, heavy wall heat storage the dynamic thermal response process. Through experimental verification, the error of calculation results and experimental results in the following 10%.
Fourth, based on the heat transfer model is proposed, considering the resistance change coupling the heat collecting part of the wall, to get the analytical expression to determine the general passive climate control building wall external insulation layer thickness, and the thermal time constant wall heat and physical parameters of optimal threshold range. Through the analysis of external insulation layer thickness analytic expression and the main influencing factors for the heating / air conditioning degree days, discount rate, material price and thermal conductivity, for the convenience of engineering application, put forward the correlation of optimum insulation thickness and thermal conductivity of materials. At the same time, from the perspective of improving the stability of building heat, with indoor and outdoor air ratio and the interior wall surface for the temperature evaluation parameters were proposed, the coefficient of thermal conductivity of wall than the optimal range of parameters such as heat capacity and thickness.
Finally, aiming at the passive environment indoor thermal environment regulation building to rapid prediction and aided design parameters of equipment system is no problem on the basis of experimental data, color solar wall building thermal process and application of similarity criterion based on proposed rapid calculation of natural operating room temperature formula in different climate areas and architectural design under the condition of passive climate control building. The heat collecting part into the amount of heating with solar irradiance changes of indoor heat, so the formula can be calculated on the basis of the dynamic fluctuation of temperature changes with the outdoor meteorological parameters, and provide theoretical support for the design of passive quantitative control effect and matching auxiliary equipment system.
Based on the analysis of climate adaptability, put forward the technology improvement and building integration application research to indoor thermal environment prediction method, method of forming of passive climate control independent and complete, provide quantitative evaluation parameters for integrated application of passive climate control technology and design basis, to further promote the popularization and application of passive environmental regulation, formulate relevant national design code has laid a theoretical foundation.

【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TU201.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 夏佰林;趙東亮;代彥軍;李勇;;擾流板型太陽(yáng)能平板空氣集熱器集熱性能[J];上海交通大學(xué)學(xué)報(bào);2011年06期

2 陸維德,李軍,吳京生;直接收益式被動(dòng)太陽(yáng)房的熱工設(shè)計(jì)研究[J];太陽(yáng)能學(xué)報(bào);1986年03期

3 胡京,陸維德,鄭敏樟;附加陽(yáng)光間式被動(dòng)太陽(yáng)房數(shù)學(xué)模型及模擬程序PASOL-SS[J];太陽(yáng)能學(xué)報(bào);1988年02期

4 李軍,陸維德;論組合式被動(dòng)太陽(yáng)房中采用無(wú)孔集熱墻的可行性[J];太陽(yáng)能學(xué)報(bào);1988年04期

5 胡京,陸維德,鄭敏樟;附加陽(yáng)光間式太陽(yáng)房靈敏度分析[J];太陽(yáng)能學(xué)報(bào);1989年01期

6 房琳,曲德林,劉福禎;空調(diào)建筑外墻和屋頂經(jīng)濟(jì)絕熱厚度的計(jì)算[J];太陽(yáng)能學(xué)報(bào);2002年06期

7 季杰;易樺;何偉;裴剛;陸劍平;蔣斌;;PV新型Trombe墻光電光熱性能數(shù)值模擬[J];太陽(yáng)能學(xué)報(bào);2006年09期

8 趙軍;曲航;崔俊奎;戴傳山;;跨季節(jié)蓄熱太陽(yáng)能集中供熱系統(tǒng)的仿真分析[J];太陽(yáng)能學(xué)報(bào);2008年02期

9 翟輝;代彥軍;吳靜怡;王如竹;;大型平板型/真空管太陽(yáng)集熱器陣列排布問(wèn)題研究[J];太陽(yáng)能學(xué)報(bào);2008年05期

10 裴剛;季杰;蔣愛(ài)國(guó);周天泰;何偉;;光伏雙層窗的綜合性能研究[J];太陽(yáng)能學(xué)報(bào);2009年04期

相關(guān)博士學(xué)位論文 前4條

1 于靖華;基于EETP指標(biāo)的夏熱冬冷地區(qū)居住建筑圍護(hù)結(jié)構(gòu)熱工性能及經(jīng)濟(jì)性研究[D];湖南大學(xué);2009年

2 夏偉;基于被動(dòng)式設(shè)計(jì)策略的氣候分區(qū)研究[D];清華大學(xué);2009年

3 李向前;墻體非穩(wěn)態(tài)傳熱計(jì)算方法適應(yīng)性及地下結(jié)構(gòu)傳熱特性分析與研究[D];湖南大學(xué);2011年

4 王登甲;間歇采暖太陽(yáng)能建筑熱過(guò)程及設(shè)計(jì)優(yōu)化研究[D];西安建筑科技大學(xué);2012年

,

本文編號(hào):1749403

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1749403.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7edf5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com