被動式環(huán)境調(diào)控策略及技術(shù)集成應(yīng)用研究
本文選題:被動式環(huán)境調(diào)控 + 變色太陽墻。 參考:《大連理工大學》2014年博士論文
【摘要】:在整個低能耗建筑設(shè)計過程中充分考慮建筑本身的環(huán)境調(diào)控作用,是從根本上降低建筑能耗的重要途徑。最大限度地利用自然能源潛能,通過合理的建筑自身設(shè)計實現(xiàn)較舒適的自然運行室內(nèi)熱環(huán)境是被動式環(huán)境調(diào)控建筑的基本設(shè)計理念。目前關(guān)于被動式環(huán)境調(diào)控的國內(nèi)外相關(guān)研究多集中在建筑構(gòu)件、材料和調(diào)控技術(shù)等相對分散的領(lǐng)域,同時存在調(diào)控技術(shù)性能不完善,缺乏技術(shù)集成應(yīng)用較全面的熱特性研究成果,無法快速預測被動式環(huán)境調(diào)控設(shè)計對建筑熱環(huán)境的定量影響等問題,上述原因制約了被動式環(huán)境調(diào)控建筑的應(yīng)用與發(fā)展。因此,開展被動式環(huán)境調(diào)控技術(shù)及其集成應(yīng)用的研究,為被動式環(huán)境調(diào)控建筑設(shè)計提供技術(shù)及理論支撐,具有重要的現(xiàn)實意義及學術(shù)價值。 本文以寒冷地區(qū)氣候適應(yīng)性調(diào)控策略、變色太陽墻技術(shù)的研制及建筑集成應(yīng)用為核心,通過實驗及理論研究,深入探討了基于變色太陽墻作用下,建筑熱響應(yīng)特性、熱工性能改善和自然運行室溫快速預測方法等理論和技術(shù)問題,得到的主要成果如下: 首先,引入平衡點溫度作為評價參數(shù),得到耦合太陽能集熱構(gòu)件建筑南外墻窗墻比優(yōu)化取值范圍以及不同被動式太陽能采暖氣候區(qū)的太陽能利用潛力范圍。研究結(jié)果表明,在大連氣候條件下,采用集熱構(gòu)件后建筑的太陽能利用潛力提升了49.3%。同時,為讓冬季太陽能利用潛力最大化并防止夏季過熱,大連地區(qū)耦合集熱構(gòu)件南墻的窗墻比優(yōu)化取值范圍在0.2-0.35之間(大連地區(qū)居住建筑節(jié)能65%設(shè)計標準推薦值:≤0.45)。 其次,提出變色太陽墻、光電風機和溫控風門等自動控制構(gòu)件聯(lián)合運行的被動式環(huán)境調(diào)控建筑模式,解決了既有太陽能熱利用技術(shù)存在夏季過熱、運行過程手動控制不方便等問題。以該模式為原型建造足尺大示范住宅并構(gòu)建了計算機數(shù)據(jù)自動巡回監(jiān)測系統(tǒng),通過對連續(xù)兩年實測結(jié)果的分析,得到變色太陽墻動態(tài)熱特性及技術(shù)集成建筑的熱響應(yīng)變化規(guī)律。研究結(jié)果表明,采用擠塑板保溫、風機安裝在回風口并采用連續(xù)運行的熱效率最佳,達到56.8%;冬季晴朗天氣下利用變色太陽墻采暖可使室溫維持在10℃~17℃;夏季通過改變變色太陽墻集熱板顏色及開啟外部通風口可使室內(nèi)空氣溫度維持在24.8~26.6℃。 第三,基于考慮溫度分區(qū)及耦合集熱構(gòu)件復合墻體的動態(tài)傳熱過程,依據(jù)動態(tài)熱網(wǎng)絡(luò)法耦合反應(yīng)系數(shù)法,建立了變色太陽墻建筑動態(tài)傳熱過程計算模型。該模型充分考慮了集熱構(gòu)件空氣間層與室內(nèi)空氣的對流換熱、重質(zhì)墻體蓄放熱等動態(tài)熱響應(yīng)過程。經(jīng)實驗驗證,計算結(jié)果與實驗結(jié)果的誤差在10%以下。 第四,基于提出的傳熱計算模型,考慮耦合集熱部件墻體的熱阻變化,解析得到確定被動式環(huán)境調(diào)控建筑南墻外保溫層最佳厚度的通用表達式,并提出熱時間常數(shù)及內(nèi)墻熱物性參數(shù)等優(yōu)化閾值范圍。通過對外保溫層最佳厚度解析表達式的分析,得到其影響因素主要為采暖/空調(diào)度日數(shù)、折現(xiàn)率、材料價格及導熱系數(shù)等,為便于工程應(yīng)用,提出了保溫層最佳厚度與材料導熱系數(shù)的關(guān)聯(lián)式。同時,從提高建筑熱穩(wěn)定性目的出發(fā),以室內(nèi)外空氣振幅比和墻體內(nèi)壁面溫度為評價參數(shù),分別提出內(nèi)墻導熱系數(shù)、比熱容以及厚度等參數(shù)的優(yōu)化取值范圍。 最后,針對目前被動式環(huán)境調(diào)控建筑室內(nèi)熱環(huán)境難以快速預測及輔助設(shè)備系統(tǒng)設(shè)計參數(shù)取值無依據(jù)等問題,基于變色太陽墻應(yīng)用建筑熱過程實驗數(shù)據(jù)及相似準則,提出可快速預測在不同氣候區(qū)及建筑設(shè)計條件下被動式環(huán)境調(diào)控建筑的自然運行室溫公式。將集熱部件供熱量轉(zhuǎn)變?yōu)殡S太陽輻照度變化的室內(nèi)得熱量項,故依據(jù)該公式可計算得到隨室外氣象參數(shù)變化的動態(tài)室溫波動,為被動式設(shè)計的定量調(diào)控效果及匹配輔助設(shè)備系統(tǒng)提供理論支撐。 本文通過對氣候適應(yīng)性分析、技術(shù)改進及建筑集成應(yīng)用研究到室內(nèi)熱環(huán)境預測方法的提出,形成獨立完整的被動式環(huán)境調(diào)控研究方法,為被動式環(huán)境調(diào)控技術(shù)的集成應(yīng)用提供了定量評價參數(shù)及設(shè)計依據(jù),進一步對推動被動式環(huán)境調(diào)控建筑的普及應(yīng)用、制訂國家相關(guān)設(shè)計規(guī)范奠定了理論基礎(chǔ)。
[Abstract]:Give full consideration to the environmental regulation of the building itself in the whole design process of low energy building, is an important way to reduce building energy consumption fundamentally. To maximize the use of natural energy potential, through reasonable design and implementation of building its own natural operation more comfortable indoor thermal environment is the basic design idea of building environmental regulation. At present about the passive passive climate control related research at home and abroad focused on building components, materials and control technology of relatively scattered areas exist at the same time performance control technology is not perfect, the lack of research results of thermal characteristics of technology integration application comprehensively, can predict passive environmental control design of building thermal environment influence quantitative fast, the reason for restricting the application and development of the construction of passive climate control. Therefore, to carry out the technology of passive environmental control and application integration. It is of great practical significance and academic value to provide technical and theoretical support for the passive environmental regulation and control of architectural design.
Based on the climate adaptability control strategy of cold area, color solar wall technology development and building integrated application as the core, through the experimental and theoretical research, in-depth study based on the discoloration of the solar wall under the action of thermal response characteristics of building methods, theory and technology of the rapid prediction of thermal performance improvement and natural operation at room temperature, the main results are as follows:
First of all, the introduction of the balanced point temperature as evaluation parameters, the coupled solar collector component south wall window wall ratio optimal range and different climate zones of passive solar heating utilization potential of solar energy range. The results show that under the climatic conditions of Dalian, using the collector component after using the building to enhance the potential of solar energy 49.3%. at the same time, to make maximum utilization potential of solar energy in winter and summer to prevent overheating, Dalian area coupled thermal component south wall window wall ratio optimization in the 0.2-0.35 range (Dalian area residential building energy-saving 65% of the design standards recommended values: less than or equal to 0.45).
Secondly, the color of solar wall, mode of passive climate control building photoelectric fan and temperature control air door automatic control component joint operation, solves the problems of solar heat utilization technology in summer overheating, operation process of manual control is not convenient. In this mode the original type construction and the construction of the full-scale demonstration residential automatic monitoring the system of computer data, through the analysis of the measured results for two consecutive years, the change law in response to discoloration of thermal dynamic characteristics of solar wall and building thermal technology integration. The results show that the extruded insulation board, the fan is installed in the air outlet and the continuous operation of the best thermal efficiency, reaching 56.8%; sunny winter weather the sun color wall heating can make the room temperature maintained at 10 to 17 DEG C; summer by change the color solar wall collector color and open external vents can make indoor air temperature The degree is maintained at 24.8 ~ 26.6 degrees centigrade.
Third, the dynamic heat transfer process considering temperature zoning and coupled thermal components of composite wall based on thermal network method based on coupling dynamic response coefficient method, established the calculation model of dynamic heat transfer process of building wall color sun. This model fully considers the convection air collector component of air layer and indoor heat exchanger, heavy wall heat storage the dynamic thermal response process. Through experimental verification, the error of calculation results and experimental results in the following 10%.
Fourth, based on the heat transfer model is proposed, considering the resistance change coupling the heat collecting part of the wall, to get the analytical expression to determine the general passive climate control building wall external insulation layer thickness, and the thermal time constant wall heat and physical parameters of optimal threshold range. Through the analysis of external insulation layer thickness analytic expression and the main influencing factors for the heating / air conditioning degree days, discount rate, material price and thermal conductivity, for the convenience of engineering application, put forward the correlation of optimum insulation thickness and thermal conductivity of materials. At the same time, from the perspective of improving the stability of building heat, with indoor and outdoor air ratio and the interior wall surface for the temperature evaluation parameters were proposed, the coefficient of thermal conductivity of wall than the optimal range of parameters such as heat capacity and thickness.
Finally, aiming at the passive environment indoor thermal environment regulation building to rapid prediction and aided design parameters of equipment system is no problem on the basis of experimental data, color solar wall building thermal process and application of similarity criterion based on proposed rapid calculation of natural operating room temperature formula in different climate areas and architectural design under the condition of passive climate control building. The heat collecting part into the amount of heating with solar irradiance changes of indoor heat, so the formula can be calculated on the basis of the dynamic fluctuation of temperature changes with the outdoor meteorological parameters, and provide theoretical support for the design of passive quantitative control effect and matching auxiliary equipment system.
Based on the analysis of climate adaptability, put forward the technology improvement and building integration application research to indoor thermal environment prediction method, method of forming of passive climate control independent and complete, provide quantitative evaluation parameters for integrated application of passive climate control technology and design basis, to further promote the popularization and application of passive environmental regulation, formulate relevant national design code has laid a theoretical foundation.
【學位授予單位】:大連理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TU201.5
【參考文獻】
相關(guān)期刊論文 前10條
1 夏佰林;趙東亮;代彥軍;李勇;;擾流板型太陽能平板空氣集熱器集熱性能[J];上海交通大學學報;2011年06期
2 陸維德,李軍,吳京生;直接收益式被動太陽房的熱工設(shè)計研究[J];太陽能學報;1986年03期
3 胡京,陸維德,鄭敏樟;附加陽光間式被動太陽房數(shù)學模型及模擬程序PASOL-SS[J];太陽能學報;1988年02期
4 李軍,陸維德;論組合式被動太陽房中采用無孔集熱墻的可行性[J];太陽能學報;1988年04期
5 胡京,陸維德,鄭敏樟;附加陽光間式太陽房靈敏度分析[J];太陽能學報;1989年01期
6 房琳,曲德林,劉福禎;空調(diào)建筑外墻和屋頂經(jīng)濟絕熱厚度的計算[J];太陽能學報;2002年06期
7 季杰;易樺;何偉;裴剛;陸劍平;蔣斌;;PV新型Trombe墻光電光熱性能數(shù)值模擬[J];太陽能學報;2006年09期
8 趙軍;曲航;崔俊奎;戴傳山;;跨季節(jié)蓄熱太陽能集中供熱系統(tǒng)的仿真分析[J];太陽能學報;2008年02期
9 翟輝;代彥軍;吳靜怡;王如竹;;大型平板型/真空管太陽集熱器陣列排布問題研究[J];太陽能學報;2008年05期
10 裴剛;季杰;蔣愛國;周天泰;何偉;;光伏雙層窗的綜合性能研究[J];太陽能學報;2009年04期
相關(guān)博士學位論文 前4條
1 于靖華;基于EETP指標的夏熱冬冷地區(qū)居住建筑圍護結(jié)構(gòu)熱工性能及經(jīng)濟性研究[D];湖南大學;2009年
2 夏偉;基于被動式設(shè)計策略的氣候分區(qū)研究[D];清華大學;2009年
3 李向前;墻體非穩(wěn)態(tài)傳熱計算方法適應(yīng)性及地下結(jié)構(gòu)傳熱特性分析與研究[D];湖南大學;2011年
4 王登甲;間歇采暖太陽能建筑熱過程及設(shè)計優(yōu)化研究[D];西安建筑科技大學;2012年
,本文編號:1749403
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1749403.html