天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 管理論文 > 城建管理論文 >

動(dòng)態(tài)環(huán)境作用下螺旋型地埋管的傳熱模型與換熱特性

發(fā)布時(shí)間:2018-04-11 23:16

  本文選題:螺旋型地埋管 + 土壤源熱泵 ; 參考:《重慶大學(xué)》2014年博士論文


【摘要】:土壤源熱泵利用地下巖土作為熱泵機(jī)組的低品位熱源(匯),具有高效節(jié)能、環(huán)境友好的優(yōu)點(diǎn),但是由于傳統(tǒng)垂直U型土壤源熱泵系統(tǒng)鉆孔費(fèi)用較高,特別是重慶、成都等巖石地質(zhì)結(jié)構(gòu),初投資高,經(jīng)濟(jì)性差,在技術(shù)推廣過程中阻力較大。對(duì)于螺旋型地埋管換熱器而言,,由于其能夠依托建筑基礎(chǔ),可較大程度節(jié)約鉆孔費(fèi)用,減少了系統(tǒng)初投資,有利于技術(shù)推廣應(yīng)用。但是由于螺旋型地埋管換熱器幾何結(jié)構(gòu)較為復(fù)雜,且具有埋深淺、樁徑大的特點(diǎn),其傳熱機(jī)理與換熱特性有異于傳統(tǒng)垂直U型地埋管,傳統(tǒng)的地埋管傳熱模型不能正確描述其傳熱現(xiàn)象;此外,土壤表面環(huán)境參數(shù)(空氣溫度、太陽輻射等)的動(dòng)態(tài)變化對(duì)埋深較淺的螺旋型地埋管的傳熱過程具有較大的影響,但是目前描述螺旋型地埋管傳熱過程的物理模型未深入考慮上述影響,故在上述工程實(shí)際問題及研究現(xiàn)狀的基礎(chǔ)上,本文對(duì)螺旋型地埋管換熱器的傳熱模型及換熱特性進(jìn)行了研究。 首先,對(duì)螺旋型地埋管換熱器的導(dǎo)熱模型進(jìn)行了研究,建立了區(qū)別回填料與巖土熱物性差異的螺旋型地埋管換熱器實(shí)心圓柱熱源一維導(dǎo)熱數(shù)值解模型及線圈熱源二維導(dǎo)熱數(shù)值解模型,并與忽略熱物性差異的導(dǎo)熱解析解模型做了定量對(duì)比,分析了一維及二維模型的溫度空間分布特征及溫度時(shí)間變化特征。 其次,在研究導(dǎo)熱模型的基礎(chǔ)上,提出了螺旋型地埋管在柱坐標(biāo)系統(tǒng)下的單元體離散方法,并在此基礎(chǔ)上建立了動(dòng)態(tài)環(huán)境作用下螺旋型地埋管換熱器的三維數(shù)值傳熱模型,該模型了考慮了回填料與巖土熱物性差異及動(dòng)態(tài)土壤邊界條件對(duì)傳熱的影響,采用visual studio程序開發(fā)平臺(tái)中C#程序設(shè)計(jì)語言,編制了螺旋型地埋管換熱器設(shè)計(jì)與動(dòng)態(tài)模擬軟件;利用提出的螺旋型地埋管三維數(shù)值傳熱模型,模擬分析了地埋管設(shè)計(jì)參數(shù)、運(yùn)行工況、螺旋形式、覆土深度、初始溫度分布對(duì)傳熱特性的影響,提出了螺旋型地埋管沿流動(dòng)方向上的4個(gè)典型換熱階段:進(jìn)口換熱換熱階段、回填區(qū)域熱短路換熱階段、小溫差換熱階段及出口換熱階段,分析了設(shè)計(jì)參數(shù)與運(yùn)行工況等因素對(duì)4個(gè)換熱階段換熱特性的影響。 然后,考慮管群作用對(duì)螺旋型地埋管換熱效果的影響,將傳熱區(qū)域分為單樁傳熱區(qū)域與管群傳熱區(qū)域,采用導(dǎo)熱解析解模型與三維數(shù)值解模型分別描述管群傳熱區(qū)域與單樁傳熱區(qū)域傳熱過程,提出“動(dòng)態(tài)土壤徑向邊界熱流”的概念,將單樁傳熱區(qū)域與管群傳熱區(qū)域進(jìn)行耦合,從而建立了考慮管群作用下適合系統(tǒng)長(zhǎng)期模擬的螺旋型地埋管換熱系統(tǒng)的傳熱模型;另外,考慮機(jī)組負(fù)荷率、冷凝器水溫及水量、蒸發(fā)器水溫及水量等5個(gè)因素,建立了螺桿熱泵機(jī)組變工況能效模型;在螺旋型地埋管換熱系統(tǒng)的傳熱模型及機(jī)組能效模型的基礎(chǔ)上,模擬分析了重慶氣候條件下,無輔助散熱措施情況下地埋管系統(tǒng)的典型月響應(yīng)特性、過渡季節(jié)溫度恢復(fù)特性及典型年動(dòng)態(tài)響應(yīng)特性;然后通過調(diào)整夏季負(fù)荷,模擬了考慮輔助散熱措施情況下的地埋管系統(tǒng)響應(yīng)特性。 最后,以貴陽城鄉(xiāng)規(guī)劃展覽館螺旋型地埋管熱泵系統(tǒng)為案例項(xiàng)目,進(jìn)行了實(shí)驗(yàn)性測(cè)試,分析了系統(tǒng)原始工況的運(yùn)行特性,并提出了優(yōu)化運(yùn)行模式,在次日對(duì)優(yōu)化運(yùn)行模式進(jìn)行了測(cè)試,發(fā)現(xiàn)冷熱源系統(tǒng)能效提高了26.1%。另外,基于本文提出的三維傳熱模型與原始工況測(cè)試數(shù)據(jù),確定得出測(cè)試項(xiàng)目埋管區(qū)域的巖土熱物性參數(shù),利用得出的熱物性參數(shù),預(yù)測(cè)了螺旋型地埋管換熱器在優(yōu)化運(yùn)行工況條件下的出水溫度,預(yù)測(cè)結(jié)果表明:本文提出的螺旋型地埋管三維傳熱模型具有較高的精確度,能夠可靠的預(yù)測(cè)地埋管水溫變化情況。
[Abstract]:The use of underground rock soil source heat pump for low grade heat source heat pump (sink), has the advantages of high efficiency and energy saving, environment friendly, but because of the traditional vertical U type ground source heat pump system of drilling cost is higher, especially in Chongqing, Chengdu and other geological structure of rock, the high initial investment, poor economy, resistance in the promotion process larger. For heat exchanger tube spiral type ground, because it can rely on the building foundation, can greatly save drilling cost, reduce the system initial investment, is conducive to the promotion and application of technology. But because the exchanger geometry of complex spiral type ground, and has the characteristics of large buried depth, pile diameter. The mechanism of heat transfer and heat transfer characteristics are different from traditional U vertical U-tube, traditional underground pipe heat transfer model cannot correctly describe the heat transfer phenomenon; in addition, the soil surface environmental parameters (air temperature, solar radiation). Has a great influence on the heat transfer process of spiral pipe the dynamic changes of the shallow depth, but the physical model describing the heat transfer process of spiral type buried pipe without a thorough consideration of the above effects, so the situation based on the problems mentioned above and the research on the spiral U-tube heat exchanger and heat transfer model the heat transfer characteristics were studied.
First of all, the research on spiral pipe heat conduction model of heat exchanger, a spiral type ground between backfill and rock soil thermal properties of different heat exchanger solid cylindrical heat source model and numerical solution of one-dimensional heat conduction numerical solution of two-dimensional heat conduction coil heat source model, and thermal analytical ignore differences in thermal properties the solution model to do quantitative comparative analysis, the distribution characteristics of temperature and time temperature change characteristics of one-dimensional and two-dimensional space model.
Secondly, based on the heat conduction model, put forward the element discretization method in cylindrical coordinate system of spiral pipe under the ground, and on this basis to establish a 3D numerical model of heat transfer of heat exchanger spiral type ground dynamic environment under the action of tube, the model considers the effect of backfill and rock soil thermal properties. The difference of soil and dynamic boundary conditions on heat transfer, by using C# programming language Visual Studio programming platform, the spiral pipe for heat exchanger design and dynamic simulation software; using spiral buried pipe is proposed for three-dimensional numerical heat transfer model, simulation analysis of the design parameters, operating conditions of buried pipe, helical form. The depth of overlying soil, effect of initial temperature distribution on the heat transfer characteristics, puts forward 4 typical spiral pipe along the flow direction on heat transfer stage: imported heat exchanger, the heat exchanger backfilling area short circuit order The effect of the design parameters and operating conditions on the heat transfer characteristics of the 4 heat exchange stages is analyzed.
Then, considering the effect of tube tube group affect the heat transfer effect of spiral type ground, heat transfer area is divided into single pile heat transfer area and pipe group heat transfer zone, solution model and 3D numerical solution model to describe the heat transfer region of single pile and pipe group heat transfer heat transfer by conduction region analysis, the concept of "dynamic soil radial boundary the heat will be coupled heat transfer zone and single pile pipe group heat transfer area, so as to establish a long-term simulation of buried spiral tube for group action system considering the heat transfer model of heat exchanger system; in addition, considering the load rate, condenser and evaporator temperature and water temperature, water and other 5 factors. The working efficiency model of variable heat pump is established; energy efficiency model based on the tube heat transfer model and unit heat exchanger system in spiral buried, simulated and analyzed the climate condition of Chongqing, no auxiliary cooling measures. The typical monthly response characteristics of the buried pipe system, the temperature recovery characteristics in the transitional season and the typical annual dynamic response characteristics are presented. Then the response characteristics of the buried pipe system considering the auxiliary cooling measures are simulated by adjusting the summer load.
Finally, taking Guiyang urban and rural planning exhibition hall type spiral pipe heat pump system as the case project, experiment test, analyzes the operating characteristics of the original operating system, and puts forward the optimized operation mode, in the test of optimal operation mode, found the cold and heat source system of improving energy efficiency of 26.1%. in addition, the three-dimensional heat transfer model the original condition based on the test data, determine the thermal parameters of soil and rock that buried pipe test project area, using thermal parameters obtained, to predict the water temperature of heat exchanger under optimized operating conditions under the condition of the spiral pipe buried, the forecast results show that three-dimensional heat transfer model of spiral type ground is proposed in this paper. The tube has high accuracy, can predict the change of water temperature of buried pipe reliable.

【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU831

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王景剛,馬一太,張子平,王侃宏,候立泉;地源熱泵的運(yùn)行特性模擬研究[J];工程熱物理學(xué)報(bào);2003年03期

2 王蕊;趙靜野;陳曉春;;樁埋螺旋管地?zé)釗Q熱器的數(shù)值模擬[J];北京建筑工程學(xué)院學(xué)報(bào);2013年01期

3 任曉紅,孫純武,胡彥輝;U型埋管換熱器三維數(shù)值模擬和供熱實(shí)驗(yàn)研究[J];重慶建筑大學(xué)學(xué)報(bào);2004年05期

4 李隆鍵;鮑建鎮(zhèn);廖全;崔文智;;回填料對(duì)地埋管換熱器性能的影響[J];土木建筑與環(huán)境工程;2011年05期

5 盧軍;黃光勤;徐永軍;;定熱流熱響應(yīng)實(shí)驗(yàn)確定巖土熱物性方法[J];土木建筑與環(huán)境工程;2012年02期

6 程洪濤;;低能耗建筑技術(shù)在南京朗詩·國(guó)際街區(qū)的應(yīng)用[J];建筑科學(xué);2006年06期

7 王琰;;南京某辦公綜合樓地源熱泵+蓄能空調(diào)系統(tǒng)的設(shè)計(jì)研究[J];建筑科學(xué);2010年10期

8 陳曉春;許海松;徐穩(wěn)龍;潘云鋼;丁高;;U型地埋管三維非穩(wěn)態(tài)流固耦合換熱數(shù)值模擬研究[J];建設(shè)科技;2008年10期

9 余延順;馬娟;;負(fù)荷分布對(duì)地源熱泵系統(tǒng)長(zhǎng)期運(yùn)行特性的影響[J];南京理工大學(xué)學(xué)報(bào);2011年02期

10 趙軍;王華軍;;密集型樁埋換熱器管群周圍土壤換熱特性的數(shù)值模擬[J];暖通空調(diào);2006年02期

相關(guān)博士學(xué)位論文 前2條

1 陸勝利;世界能源問題與中國(guó)能源安全研究[D];中共中央黨校;2011年

2 郭四代;中國(guó)新能源消費(fèi)與經(jīng)濟(jì)增長(zhǎng)關(guān)系的實(shí)證研究[D];中國(guó)地質(zhì)大學(xué)(北京);2012年

相關(guān)碩士學(xué)位論文 前1條

1 吳毅;螺旋管樁基換熱器數(shù)值模型[D];西華大學(xué);2013年



本文編號(hào):1738102

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1738102.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5c8d6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com