太陽能熱水和熱泵復(fù)合熱源的毛細(xì)管輻射供暖應(yīng)用研究
本文選題:太陽能 + 復(fù)合熱源; 參考:《東南大學(xué)》2016年碩士論文
【摘要】:針對建筑節(jié)能、低碳環(huán)保的迫切需求,本文研究了一種采用太陽能和空氣源熱泵(熱泵)作為熱源的毛細(xì)管輻射供暖系統(tǒng)。相比其他供暖系統(tǒng),該系統(tǒng)不但能提高人體舒適性,還具有節(jié)能環(huán)保的特點。本文的研究工作包括下面幾個方面:對南京地區(qū)建筑面積為354.50m2的某三層別墅進(jìn)行建模,采用典型氣象年逐時氣象參數(shù)進(jìn)行熱環(huán)境動態(tài)模擬;對該建筑的6個空間設(shè)計了毛細(xì)管輻射式供暖系統(tǒng)(鋪設(shè)面積為250m2),熱源側(cè)考慮采用太陽能熱水+熱泵的復(fù)合能源系統(tǒng)與單一熱源供暖系統(tǒng)兩種情況;對平板型集熱器、蓄熱水箱、熱泵分別進(jìn)行建模。應(yīng)用TRNSYS軟件模擬研究最佳的蓄熱水箱體積與集熱面積的比值(VAR);采用最佳比值模擬研究有效集熱量和集熱效率的變化,分析每周、每月及全年太陽能保證率和熱泵逐時能耗情況;將復(fù)合熱源供暖系統(tǒng)與單一熱源供暖系統(tǒng)能耗模擬比較分析,計算復(fù)合熱源初投資回收期限;對單一熱源熱泵供暖進(jìn)行實驗測試和分析研究;運用費用年值算法分析復(fù)合系統(tǒng)經(jīng)濟(jì)性和節(jié)能性。本文研究的成果包括以下幾個方面:1)創(chuàng)新提出了研究優(yōu)化太陽能集熱系統(tǒng)的重要參數(shù)(VAR),創(chuàng)新提出VAR的三步優(yōu)化法:a)費用年值法優(yōu)化;b)有效集熱量和集熱效率優(yōu)化;c)太陽能保證率優(yōu)化。采用三步優(yōu)化法模擬得到復(fù)合系統(tǒng)的最佳VAR區(qū)間為[0.049,0.065],即1m2集熱面積的優(yōu)化配置水箱容積為50L-60L。2)根據(jù)建筑能耗模擬和太陽輻射模擬分析,得到太陽能集熱面積為48.52m2,確定VAR=0.057,蓄熱水箱體積為2.75m3。采用上述配置,太陽能熱水系統(tǒng)典型日有效集熱量為525.49MJ,其余熱負(fù)荷281.60MJ由熱泵承擔(dān),太陽能占建筑總負(fù)荷的65.11%。全年供暖期太陽能有效集熱量為33773.72MJ,配套熱泵供熱量為20189.71MJ,太陽能集熱系統(tǒng)與熱泵系統(tǒng)熱量比為8:5。3)將復(fù)合熱源與單一熱源全年供暖能耗模擬比較,復(fù)合熱源模式下熱泵能耗為3209.25kWh,單一熱源模式下能耗5753.18kWh,復(fù)合熱源節(jié)能2543.93kWh。復(fù)合熱源的初投資高出單一熱源25285元,利用節(jié)能回報,可以在不到8年時間里回收投資。4)考慮生命周期15年,將復(fù)合熱源與傳統(tǒng)熱源比較,采用費用年值法將復(fù)合熱源與燃?xì)忮仩t、燃油鍋爐、電輔助太陽能供暖系統(tǒng)比較得知,復(fù)合熱源初投資為78185元,年運行費用為1765元,費用年值最低,為10912元/年。復(fù)合熱源每年能節(jié)省標(biāo)準(zhǔn)煤為2.30噸、節(jié)省碳排放量為1.63噸。本文有3個創(chuàng)新點,提出VAR作為太陽能集熱系統(tǒng)優(yōu)化研究參數(shù);建立VAR的三步優(yōu)化研究法;建筑能耗和熱泵耦合的逐時能耗模擬。本文的研究成果對研發(fā)高效、節(jié)能、環(huán)保的輻射暖通系統(tǒng)具有很好的參考價值。
[Abstract]:Aiming at the urgent need of building energy saving and low carbon environmental protection, a capillary radiation heating system using solar energy and air source heat pump (heat pump) as heat source is studied in this paper.Compared with other heating systems, this system not only improves human comfort, but also has the characteristics of energy saving and environmental protection.The research work of this paper includes the following aspects: modeling of a three-story villa with 354.50m2 building area in Nanjing area and dynamic simulation of thermal environment with typical meteorological annual hourly meteorological parameters;The capillary radiation heating system (laid area is 250m ~ 2) is designed for six spaces of this building. The heat source side considers the use of solar hot water heat pump as a composite energy system and a single heat source heating system.The heat storage tank and heat pump are modeled separately.The best ratio of storage tank volume to heat collecting area is studied by TRNSYS software, the change of effective heat collection and heat collection efficiency is studied by the best ratio simulation, and the energy consumption of heat pump is analyzed every week, every month and every year.The energy consumption of compound heat source heating system is compared with that of single heat source heating system, the initial investment recovery period of compound heat source is calculated, and the heat supply of single heat source heat pump is tested and analyzed.The cost annual algorithm is used to analyze the economy and energy efficiency of the composite system.The research results of this paper include the following aspects: 1) innovating the important parameter of studying and optimizing solar energy collector system, innovating VAR's three-step optimization method: a) cost annual value method to optimize the effective heat collection and heat collection efficiency optimization.Optimization of solar energy guarantee rate.Using three-step optimization method, the optimum VAR interval of the composite system is [0.049 / 0. 065], that is, the optimal allocation tank volume of the 1m2 heat collecting area is 50L-60L. 2) according to the simulation of building energy consumption and solar radiation simulation,The solar energy collecting area is 48.52 m2, the VARN is 0.057 and the volume of the storage tank is 2.75 m ~ 3.With the above configuration, the typical daily effective heat collection of the solar water heating system is 525.49 MJ, the rest of the heat load 281.60MJ is borne by the heat pump, and the solar energy accounts for 65.11% of the total building load.The effective heat collection of solar energy is 33773.72MJ, the heat supply of matching heat pump is 20189.71MJ, and the heat ratio of solar energy collection system to heat pump system is 8: 5.3. the energy consumption of composite heat source and single heat source is simulated and compared with that of single heat source.The energy consumption of heat pump is 3209.25kWhin the compound heat source mode, 5753.18kWhin the single heat source mode, and 2543.93kWh.The initial investment of the composite heat source is 25285 yuan higher than that of the single heat source. With the energy saving return, the investment can be recovered in less than 8 years. (4) considering the life cycle of 15 years, the composite heat source is compared with the traditional heat source.The cost annual value method is used to compare the compound heat source with gas boiler, oil-fired boiler and electrically assisted solar heating system. It is found that the initial investment of the compound heat source is 78185 yuan, the annual operating cost is 1765 yuan, and the annual cost is the lowest, 10912 yuan per year.The composite heat source can save 2.30 tons of standard coal and 1.63 tons of carbon emissions per year.In this paper, there are three innovations, VAR as the parameter of solar energy collector system optimization, a three-step optimization research method for VAR, and a time-by-hour energy consumption simulation for building energy consumption and heat pump coupling.The research results of this paper have good reference value for the research and development of high-efficiency, energy-saving and environmental-friendly radiative HVAC system.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TU822;TU832
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張斌;;基于毛細(xì)管型輻射供暖與供冷系統(tǒng)影響因素的研究[J];能源研究與管理;2013年04期
2 王智平;陳丹丹;王克振;趙靜;;太陽能儲熱水箱溫度分層的研究現(xiàn)狀及發(fā)展趨勢[J];材料導(dǎo)報;2013年15期
3 閆云飛;張智恩;張力;代長林;;太陽能利用技術(shù)及其應(yīng)用[J];太陽能學(xué)報;2012年S1期
4 魯紅光;;太陽能供熱采暖應(yīng)用技術(shù)[J];硅谷;2011年20期
5 李雙雙;端木琳;舒海文;葉曉莉;;基于分層室溫控制的太陽能熱水低溫地板輻射供暖系統(tǒng)模擬研究[J];建筑科學(xué);2011年08期
6 高志宏;劉曉華;江億;;毛細(xì)管輻射供冷性能實驗研究[J];太陽能學(xué)報;2011年01期
7 姚萬祥;張志剛;趙樹興;杜雪娜;張建;;毛細(xì)管輻射空調(diào)系統(tǒng)運行的經(jīng)濟(jì)性分析[J];煤氣與熱力;2010年04期
8 何茜;;GB 50495-2009《太陽能供熱采暖工程技術(shù)規(guī)范》解讀[J];中國標(biāo)準(zhǔn)化;2010年04期
9 劉學(xué)來;薛紅香;李永安;李繼志;;毛細(xì)管平面輻射空調(diào)房間室內(nèi)計算溫度研究[J];煤氣與熱力;2010年03期
10 楊磊;張小松;;復(fù)合熱源太陽能熱泵熱水系統(tǒng)性能模擬[J];化工學(xué)報;2009年09期
相關(guān)博士學(xué)位論文 前1條
1 劉寅;太陽能—空氣復(fù)合熱源熱泵系統(tǒng)性能研究[D];西安建筑科技大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 鄭麗梅;毛細(xì)管平面輻射空調(diào)應(yīng)用技術(shù)研究[D];燕山大學(xué);2014年
2 印偉偉;地源熱泵—地板輻射空調(diào)系統(tǒng)運行控制研究[D];重慶大學(xué);2014年
3 尹麗媛;基于TRNSYS的太陽能耦合土壤源熱泵系統(tǒng)仿真研究[D];太原理工大學(xué);2013年
4 高騰;平板太陽能集熱器的傳熱分析及設(shè)計優(yōu)化[D];天津大學(xué);2012年
5 劉雨曦;空氣源熱泵輔助太陽能熱水系統(tǒng)在夏熱冬冷地區(qū)的運行模擬和應(yīng)用研究[D];重慶大學(xué);2011年
6 劉鵬;輔熱太陽能低溫?zé)崴匕遢椛洳膳到y(tǒng)研究[D];河南農(nóng)業(yè)大學(xué);2011年
7 李志恒;小型空氣源熱泵輔助太陽能熱水裝置性能模擬研究[D];西安建筑科技大學(xué);2010年
8 安麗;太陽能供暖系統(tǒng)的模擬研究[D];中國海洋大學(xué);2010年
9 崔新陽;毛細(xì)管平面空調(diào)系統(tǒng)的熱工特性及水力計算方法的研究[D];山東建筑大學(xué);2010年
10 張洪敏;高效平板太陽能集熱器蓋板的熱工性能實驗研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號:1734123
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1734123.html