冷熱負(fù)荷非平衡地區(qū)土壤源熱泵土壤熱失衡問(wèn)題的研究
本文關(guān)鍵詞: 土壤源熱泵 土壤熱失衡 管群換熱 輔助冷卻 復(fù)合系統(tǒng) 實(shí)驗(yàn)研究 出處:《揚(yáng)州大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:土壤熱失衡問(wèn)題作為近些年土壤源熱泵應(yīng)用中所出現(xiàn)的亟待解決的難點(diǎn)及關(guān)鍵問(wèn)題,已在一定程度上直接影響了其正確推廣與健康發(fā)展。本文通過(guò)理論分析、數(shù)值模擬及實(shí)驗(yàn)相結(jié)合的研究方法,以控制地下土壤熱平衡為目的,以供冷為主地區(qū)為例,分析了土壤源熱泵在冷熱負(fù)荷非平衡條件下,不同因素對(duì)地下?lián)Q熱區(qū)域土壤溫度動(dòng)態(tài)變化特征的影響及其控制措施,以期為土壤源熱泵土壤熱失衡的控制提供理論基礎(chǔ)與技術(shù)支持。 理論方面,本文建立了考慮地下水滲流的地下管群蓄熱模型,采用MATLAB軟件編寫(xiě)程序進(jìn)行模擬,分析了放取熱不平衡率、埋管間距、埋管布置形式、巖土類型及地下水滲流等因素對(duì)地埋管區(qū)土壤溫度十年運(yùn)行期變化規(guī)律的影響。結(jié)果表明:十年運(yùn)行結(jié)束后,無(wú)地下水滲流時(shí),地下埋管換熱區(qū)域的土壤溫度場(chǎng)沿軸線對(duì)稱分布,且呈現(xiàn)出中心高外面低的分布狀況;隨放取熱不平衡率的增大,埋管區(qū)域土壤溫升率加大,土壤熱失衡問(wèn)題加;合理的埋管間距及采用條形或稀疏布置形式可減小埋管密集程度,有效控制土壤熱失衡問(wèn)題;對(duì)于需要強(qiáng)化熱擴(kuò)散的場(chǎng)合,宜采用熱擴(kuò)散率大的土壤以加快累積熱量的擴(kuò)散;此外,地下水滲流的存在可及時(shí)帶走地下累積熱量,從而可有效緩解或消除土壤熱失衡問(wèn)題。 為了進(jìn)一步平衡全年地埋管的累積取放熱量,以從根本上控制土壤熱失衡問(wèn)題,本文提出采用外部輔助冷卻散熱控制的措施,并模擬分析了外部輔助冷卻設(shè)備作用于混合系統(tǒng)中的時(shí)間和散熱強(qiáng)度(即控制向地下排熱的時(shí)間與量)對(duì)地下土壤溫度十年運(yùn)行期變化規(guī)律的影響。結(jié)果表明:隨冷卻塔輔助散熱運(yùn)停時(shí)間比的增大及散熱率的增加,埋管區(qū)域土壤溫升率降低,土壤熱失衡問(wèn)題得到減緩;合理的冷凝熱回收時(shí)間及熱回收率,可以完全滿足土壤溫度的及時(shí)恢復(fù),緩解甚至消除土壤源熱泵系統(tǒng)長(zhǎng)期運(yùn)行所造成土壤熱失衡問(wèn)題。 實(shí)驗(yàn)方面,利用多功能復(fù)合型地源熱泵實(shí)驗(yàn)臺(tái),展開(kāi)了冷卻塔—地埋管復(fù)合系統(tǒng)不同運(yùn)行模式的實(shí)驗(yàn)研究,通過(guò)對(duì)地下埋管不同深度和半徑方向土壤溫度的采集以及4根地埋管與冷卻塔進(jìn)出口水溫和流量的監(jiān)測(cè),分析得出了不同冷卻塔輔助散熱運(yùn)行模式下地下?lián)Q熱區(qū)域土壤溫度恢復(fù)特性。實(shí)驗(yàn)表明:帶有外部輔助冷卻塔的混合系統(tǒng)可以有效緩解土壤溫度的急劇增加,降低地埋管的“熱堆積”,提高土壤溫度的恢復(fù)率。埋管半徑方向的土壤傳熱有一定的延遲性,當(dāng)運(yùn)行時(shí)間小于24小時(shí)時(shí),埋管熱作用半徑為0.5m。夜間電費(fèi)低谷時(shí)開(kāi)啟冷卻塔對(duì)地下埋管強(qiáng)制散熱,有效提高了第二天埋管換熱器的蓄熱效果,這對(duì)于只需日間制冷的建筑是一種很好的選擇模式。 本文的研究工作為土壤源熱泵土壤熱平衡控制的進(jìn)一步深入研究提供了理論依據(jù)與實(shí)驗(yàn)數(shù)據(jù),為土壤源熱泵的實(shí)際工程應(yīng)用提供了參考。
[Abstract]:The problem of soil thermal imbalance as a difficult and key problem in the application of soil source heat pump in recent years has directly influenced its correct popularization and health development . In this paper , the influence of different factors on the dynamic change of soil temperature in the underground heat exchange region under the condition of non - equilibrium of cold and heat load is analyzed by theoretical analysis , numerical simulation and experiment . On the basis of theory , this paper establishes the underground pipe group heat storage model considering the groundwater seepage , and simulates the soil temperature field in the buried pipe area by using MATLAB software programming procedure . The results show that the soil temperature field in the heat exchange area of the underground pipe is distributed symmetrically along the axis when no groundwater seepage exists . The reasonable buried pipe spacing and the form of strip or sparse arrangement can reduce the diffusion of accumulated heat . In addition , the existence of groundwater seepage can take away the accumulated heat in the ground in time , so that the problem of thermal unbalance of the soil can be effectively alleviated or eliminated . In order to balance the accumulated heat of the buried pipes in the whole year , the effect of the external auxiliary cooling equipment on the change law of the operation period of the underground soil temperature ten years has been put forward . The results show that the temperature rise rate of the soil in the buried pipe area is decreased with the increase of the auxiliary heat dissipation transportation and stopping time ratio of the cooling tower and the heat dissipation rate . The reasonable condensation heat recovery time and the heat recovery rate can completely meet the timely restoration of the soil temperature , alleviate or even eliminate the problem of soil heat balance caused by the long - term operation of the soil source heat pump system . Experimental research on the different operating modes of the composite system of the cooling tower and the underground pipe is carried out by using the multifunctional compound ground source heat pump bench , and the characteristics of soil temperature recovery in the underground heat transfer area under the auxiliary heat dissipation operation mode of the different cooling towers are analyzed through the monitoring of the soil temperature in different depths and radius directions of the underground pipe and the monitoring of the water temperature and flow rate of the four buried pipes and the cooling tower . The experiment shows that the heat transfer of the buried pipe is 0.5m when the operation time is less than 24 hours . When the operation time is less than 24 hours , the heat storage effect of the second buried pipe heat exchanger is effectively improved , which is a good choice mode for buildings requiring only daytime cooling . The research work provides theoretical basis and experimental data for further research on the soil thermal balance control of the soil source heat pump , and provides a reference for practical engineering application of the soil source heat pump .
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU83
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 余延順,廉樂(lè)明;寒區(qū)太陽(yáng)能—土壤源熱泵系統(tǒng)太陽(yáng)能保證率的確定[J];熱能動(dòng)力工程;2002年04期
2 夕文;;地源熱泵技術(shù):鐵路沿線建筑采暖制冷方式的革新[J];中國(guó)鐵路;2006年10期
3 余延順,廉樂(lè)明;寒冷地區(qū)太陽(yáng)能—土壤源熱泵系統(tǒng)運(yùn)行方式的探討[J];太陽(yáng)能學(xué)報(bào);2003年01期
4 舒海文;端木琳;華蓉蓉;鄒瑜;杜國(guó)付;;寒冷地區(qū)土壤源熱泵冷熱源系統(tǒng)設(shè)計(jì)方案研究[J];太陽(yáng)能學(xué)報(bào);2008年11期
5 楊新興;馮麗華;尉鵬;;我國(guó)能源開(kāi)發(fā)利用的出路與前景[J];前沿科學(xué);2012年02期
6 胡平放;朱娜;袁東立;江章寧;;地源熱泵地埋管換熱系統(tǒng)熱堆積分析[J];華中科技大學(xué)學(xué)報(bào)(城市科學(xué)版);2008年01期
7 丁勇;;建筑墻體的節(jié)能保溫施工技術(shù)的分析與探討[J];中國(guó)建設(shè)信息;2010年21期
8 張佩芳;地源熱泵在國(guó)外的發(fā)展概況及其在我國(guó)應(yīng)用前景初探[J];制冷與空調(diào);2003年03期
,本文編號(hào):1450282
本文鏈接:http://sikaile.net/guanlilunwen/chengjian/1450282.html