基于人工神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估模型研究
[Abstract]:With the increasing trend of economic globalization, the pace of promoting interest rate marketization in China is gradually accelerated, the volatility of financial markets is becoming more and more serious, and commercial banks are facing unprecedented credit risk challenges. In the face of increasingly fierce competition in the living environment, whether the credit risk of loan enterprises can be scientifically and effectively managed has a vital impact on the sustainable development of commercial banks. At present, the commercial banking industry of our country is still in the stage of reform, transition and new development, and the management of credit risk is still in the application stage of the traditional subjective analysis method, which is difficult to meet the development needs of commercial banks. In this paper, from the perspective of commercial banks, this paper uses neural network technology to study the credit risk assessment of commercial bank loan enterprise customers, in order to provide an effective credit risk assessment technology and method for commercial banks. Based on the literature research on the credit risk assessment model of commercial bank enterprise customers, this paper defines the connotation of commercial bank credit and credit risk, and uses the basic theory of artificial neural network. This paper scientifically studies the main influencing factors of credit risk assessment of commercial banks, constructs a credit risk assessment index system of commercial banks with 27 indicators at three levels, and studies the credit risk assessment model of commercial banks through comprehensive comparison. The credit risk assessment model of commercial banks is established based on the improved BP neural network. The model is empirically analyzed by using the data of 144 companies and MATLAB2012a statistical software. The results show that the discriminant accuracy of the credit risk assessment model of commercial banks is 87.04%, which is better than that of standard BP neural network model and Logistic regression model. It shows that the model can evaluate the credit risk of commercial bank customers reasonably and effectively. The research results of this paper provide a useful basis for the credit risk assessment of commercial bank customers, and have a good guiding value in practice.
【學(xué)位授予單位】:長(zhǎng)沙理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F832.33;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁j,吳德勝,王志強(qiáng),熊立,王國(guó)華;基于ANFIS和Elman網(wǎng)絡(luò)的信用評(píng)價(jià)研究[J];管理工程學(xué)報(bào);2005年01期
2 吳沖;張曉東;田海霞;劉超宇;;基于模糊神經(jīng)網(wǎng)絡(luò)的商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估模型研究[J];管理觀察;2009年07期
3 郭英見;吳沖;于天軍;;基于BP神經(jīng)網(wǎng)絡(luò)組和DS證據(jù)理論的信用風(fēng)險(xiǎn)評(píng)估算法[J];合肥工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2009年05期
4 張婧婧;;基于BP-KMV模型的商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)價(jià)研究[J];河海大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版);2009年03期
5 吳沖,喬木;商業(yè)銀行非財(cái)務(wù)信用風(fēng)險(xiǎn)分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2005年03期
6 程昆;儲(chǔ)昭東;米運(yùn)生;;商業(yè)銀行信貸組合信用風(fēng)險(xiǎn)VaR估計(jì)技術(shù)研究[J];上海經(jīng)濟(jì)研究;2009年02期
7 吳超鵬,吳世農(nóng);基于價(jià)值創(chuàng)造和公司治理的財(cái)務(wù)狀態(tài)分析與預(yù)測(cè)模型研究[J];經(jīng)濟(jì)研究;2005年11期
8 朱天星;于立新;田慧勇;;商業(yè)銀行個(gè)人信用風(fēng)險(xiǎn)評(píng)價(jià)模型研究[J];金融理論與實(shí)踐;2011年03期
9 肖智;李文娟;;基于主成分分析和支持向量機(jī)的個(gè)人信用評(píng)估[J];技術(shù)經(jīng)濟(jì);2010年03期
10 曾箏;;商業(yè)銀行信用風(fēng)險(xiǎn)評(píng)估方法研究[J];計(jì)算機(jī)仿真;2011年08期
相關(guān)博士學(xué)位論文 前1條
1 楊華峰;基于循環(huán)經(jīng)濟(jì)的企業(yè)競(jìng)爭(zhēng)力評(píng)價(jià)研究[D];南京理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前9條
1 譚春暉;基于支持向量機(jī)的企業(yè)信用風(fēng)險(xiǎn)評(píng)估研究[D];江南大學(xué);2010年
2 宋紅晶;應(yīng)用數(shù)據(jù)包絡(luò)分析法對(duì)我國(guó)上市中小企業(yè)的信用評(píng)分研究[D];華東師范大學(xué);2011年
3 劉錚錚;基于層次分析法的商業(yè)銀行信用評(píng)級(jí)模型研究[D];西北工業(yè)大學(xué);2006年
4 付群;商業(yè)銀行信貸風(fēng)險(xiǎn)管理[D];對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué);2006年
5 楊建模;DEA在企業(yè)信用評(píng)分中的應(yīng)用研究[D];湖南大學(xué);2009年
6 袁春振;我國(guó)商業(yè)銀行信貸風(fēng)險(xiǎn)預(yù)警研究[D];復(fù)旦大學(xué);2009年
7 趙清;商業(yè)銀行信用評(píng)級(jí)中邏輯回歸與判別分析的對(duì)比[D];山東大學(xué);2010年
8 桂司文;基于KMV模型的我國(guó)上市公司信用風(fēng)險(xiǎn)度量的實(shí)證研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
9 邱士勤;基于數(shù)據(jù)挖掘技術(shù)的商業(yè)銀行信用風(fēng)險(xiǎn)管理研究[D];湖南大學(xué);2010年
本文編號(hào):2487570
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2487570.html