非完備市場中未定權(quán)益的定價與對沖
發(fā)布時間:2019-03-31 19:17
【摘要】:本文討論非完備市場中的未定權(quán)益定價與對沖問題,利用效用無差異的思想,定義未定權(quán)益B在t時刻的價格是使得下面的不等式成立的最小的關(guān)于Ft-可測的pt:ess supπE[u(XT(x+Pt,π-B)|Ft]≥ess supπE[u(XT(x,π)|Ft],其中u是投資者的效用函數(shù),XT,x,π表示初始財富是x,投資策略是π的投資組合的財富過程.我們考慮信息流是不連續(xù)的情形,同時投資策略限制在一個閉凸集中,對具有負(fù)指數(shù)效用的投資者,得到了未定權(quán)益價格應(yīng)滿足的動態(tài)方程,它是一個帶跳的倒向隨機(jī)方程,生成元關(guān)于第二個未知變元Z是二次增長的.最后根據(jù)倒向隨機(jī)微分方程的比較定理,得到了未定權(quán)益的價格關(guān)于各個參數(shù)的變化情況.
[Abstract]:In this paper, we discuss the pricing and hedging of contingent claims in incomplete markets, and make use of the idea that there is no difference in utility. Define the price of contingent claim B at time t is the smallest pt:ess sup 蟺 E [u (XT (x Pt, 蟺-B) | Ft] 鈮,
本文編號:2451199
[Abstract]:In this paper, we discuss the pricing and hedging of contingent claims in incomplete markets, and make use of the idea that there is no difference in utility. Define the price of contingent claim B at time t is the smallest pt:ess sup 蟺 E [u (XT (x Pt, 蟺-B) | Ft] 鈮,
本文編號:2451199
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2451199.html
最近更新
教材專著