基于修正KMV模型的我國商業(yè)銀行信用風(fēng)險(xiǎn)測(cè)度
[Abstract]:As one of the most important types of financial risk faced by commercial banks in China, credit risk plays a vital role in the overall development of commercial banks. Compared with the western developed countries, the credit risk management level of our commercial banks is obviously backward, and the credit risk management system needs to be improved. Especially, there is a big gap between risk management tools and technology compared with commercial banks in developed countries. Therefore, if our commercial banks want to develop steadily and participate in the fierce international financial market competition, we must improve the ability of risk identification, evaluation, control, and absorb and apply some mature risk management techniques from abroad. Then a scientific risk identification, detection, measurement and control system is established to measure and effectively manage the credit risk in time, and to improve the key utility of the credit risk management system in the process of risk control. First of all, this paper comprehensively analyzes the current situation of credit risk of commercial banks in China, the existing problems in credit risk management and elaborates the important position of measurement in credit risk management. On the basis of comparing the applicability of four modern credit risk measurement models in China, KMV model is chosen as the basic model. Secondly, in order to improve the applicability of the KMV model in China, the parameters are revised: according to the characteristics of the sharp and thick tail of stock return series and leverage effect, the EGARCH (1K1) -M model is used to calculate the volatility of equity value instead of the GARCH (1K1) model; In view of the problem of non-tradable shares in China, the net asset pricing method is used to estimate the stock. In the setting of default point, the difference of default distance between normal company and defaulting enterprise under three different default points is calculated and tested, and the optimal default point is selected. The risk-free rate of return adopts Shanghai Interbank offered rate (Shibor) to better reflect the process of interest rate marketization. Finally, this paper analyzes and tests the credit risk measurement of 14 listed companies in the top 5 industries in 2014. The validity of the modified KMV model in China's credit risk measurement is verified. Finally, this paper puts forward some suggestions on how to improve the level of credit risk management from the aspects of measurement and application environment. The results show that: (1) using EGARCH (1) -M model to calculate the volatility of equity value can reflect the leverage effect between forward return and future volatility, and improve the accuracy of calculation. (2) through independent sample T test, The optimal default point is DPT=0.75LTD STD;. (3) the average default distance of ST is smaller than that of non-ST on the whole, which means that the default risk of ST is smaller than that of ST, which is consistent with the present situation. However, the theoretical default probability is not completely consistent with the present situation, that is, the theoretical default probability can not effectively identify the total credit risk of the company. (4) the level of credit risk of listed companies in different industries varies significantly. The credit risk of listed companies in manufacturing industry is the largest. (5) K-S test and Mann-Whitney U test are carried out on the empirical results. The results show that the modified KMV model can effectively distinguish the risk level between ST and non-ST companies. On this basis, the prediction ability of the modified model is further expressed by ROC curve, and the accuracy of prediction is 85.7%.
【學(xué)位授予單位】:南京財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:F832.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姜曉兵;溫小霓;;現(xiàn)代投資組合理論中風(fēng)險(xiǎn)測(cè)度方法的比較分析[J];價(jià)值工程;2006年05期
2 賀思輝;王茂;;小樣本下的金融風(fēng)險(xiǎn)測(cè)度的技術(shù)研究[J];數(shù)理統(tǒng)計(jì)與管理;2006年03期
3 文平;馬雪雅;齊曉波;;一致性風(fēng)險(xiǎn)測(cè)度公理的修正[J];統(tǒng)計(jì)與決策;2007年06期
4 文平;秦伶俐;;基于凸函數(shù)的風(fēng)險(xiǎn)測(cè)度[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2013年04期
5 王文龍;程希駿;;基于譜風(fēng)險(xiǎn)測(cè)度的期指保證金水平設(shè)定[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);2011年12期
6 鄭承利;陳燕;;基于等熵一致性風(fēng)險(xiǎn)測(cè)度的組合選擇[J];系統(tǒng)工程理論與實(shí)踐;2014年03期
7 謝赤;陳世平;張運(yùn)生;;高新技術(shù)企業(yè)R&D投資風(fēng)險(xiǎn)測(cè)度系統(tǒng)研究[J];科技管理研究;2006年06期
8 劉富兵;劉海龍;;下邊風(fēng)險(xiǎn)測(cè)度下養(yǎng)老基金的最優(yōu)資產(chǎn)配置[J];系統(tǒng)工程學(xué)報(bào);2010年05期
9 蹤程;陳立文;尹志軍;馬力;;城市房價(jià)風(fēng)險(xiǎn)測(cè)度及預(yù)警研究綜述[J];建筑經(jīng)濟(jì);2012年06期
10 唐吟;蘇錫坤;;譜風(fēng)險(xiǎn)測(cè)度下的投資組合[J];特區(qū)經(jīng)濟(jì);2012年11期
相關(guān)會(huì)議論文 前3條
1 周倩;彭錦;;變形風(fēng)險(xiǎn)測(cè)度與賦變范風(fēng)險(xiǎn)空間[A];第九屆中國不確定系統(tǒng)年會(huì)、第五屆中國智能計(jì)算大會(huì)、第十三屆中國青年信息與管理學(xué)者大會(huì)論文集[C];2011年
2 曹志鵬;;一致風(fēng)險(xiǎn)測(cè)度下的商業(yè)銀行資產(chǎn)配置效率研究[A];經(jīng)濟(jì)發(fā)展與管理創(chuàng)新--全國經(jīng)濟(jì)管理院校工業(yè)技術(shù)學(xué)研究會(huì)第十屆學(xué)術(shù)年會(huì)論文集[C];2010年
3 許啟發(fā);靳鑫;;金融風(fēng)險(xiǎn)測(cè)度的統(tǒng)計(jì)監(jiān)測(cè)[A];第四屆(2009)中國管理學(xué)年會(huì)——金融分會(huì)場(chǎng)論文集[C];2009年
相關(guān)重要報(bào)紙文章 前1條
1 寶盈基金管理公司 杜海濤;VaR及其在流動(dòng)性風(fēng)險(xiǎn)測(cè)度與股票質(zhì)押貸款比率確定中的應(yīng)用[N];證券時(shí)報(bào);2003年
相關(guān)博士學(xué)位論文 前10條
1 海小輝;歐盟碳排放配額交易市場(chǎng)的價(jià)格決定因素及風(fēng)險(xiǎn)測(cè)度[D];天津大學(xué);2014年
2 張f平;風(fēng)險(xiǎn)測(cè)度一致性的拓展研究[D];上海交通大學(xué);2007年
3 徐照宇;廣義非對(duì)稱金融風(fēng)險(xiǎn)測(cè)度及應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2011年
4 朱云洲;若干風(fēng)險(xiǎn)測(cè)度下的最優(yōu)再保險(xiǎn)設(shè)計(jì)[D];浙江大學(xué);2015年
5 周春陽;風(fēng)險(xiǎn)承受者視角下的下邊風(fēng)險(xiǎn)管理[D];上海交通大學(xué);2009年
6 蔣翠俠;動(dòng)態(tài)金融風(fēng)險(xiǎn)測(cè)度及管理研究[D];天津大學(xué);2007年
7 劉俊山;基于風(fēng)險(xiǎn)測(cè)度理論的證券投資組合優(yōu)化研究[D];復(fù)旦大學(xué);2007年
8 梁凌;基于信用風(fēng)險(xiǎn)測(cè)度的商業(yè)銀行貸款定價(jià)研究[D];湖南大學(xué);2009年
9 慕永國;基于條件在險(xiǎn)價(jià)值風(fēng)險(xiǎn)測(cè)度的供應(yīng)鏈契約模型研究[D];哈爾濱工業(yè)大學(xué);2010年
10 馮謙;信用風(fēng)險(xiǎn)測(cè)度和信用衍生產(chǎn)品定價(jià)[D];上海交通大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 翁在麗;基于P范數(shù)的多元及多期風(fēng)險(xiǎn)測(cè)度[D];華東師范大學(xué);2010年
2 曹植;我國保險(xiǎn)業(yè)系統(tǒng)性風(fēng)險(xiǎn)測(cè)度研究[D];山東財(cái)經(jīng)大學(xué);2015年
3 沈盟;基于Bootstrap方法的金屬期貨市場(chǎng)風(fēng)險(xiǎn)測(cè)度VaR和ES的區(qū)間預(yù)測(cè)[D];西南交通大學(xué);2015年
4 李婭;我國商業(yè)銀行結(jié)構(gòu)性理財(cái)產(chǎn)品的風(fēng)險(xiǎn)測(cè)度與實(shí)證檢驗(yàn)[D];復(fù)旦大學(xué);2014年
5 鄭倩玉;中國銀行業(yè)系統(tǒng)性風(fēng)險(xiǎn)測(cè)度及監(jiān)管啟示[D];吉林財(cái)經(jīng)大學(xué);2016年
6 張盈;基于Banach空間的擬凸風(fēng)險(xiǎn)測(cè)度與價(jià)格泡沫問題的研究[D];南京理工大學(xué);2016年
7 張文靜;基于擬凸風(fēng)險(xiǎn)測(cè)度下的最優(yōu)風(fēng)險(xiǎn)配置[D];南京理工大學(xué);2016年
8 王坤宇;基于風(fēng)險(xiǎn)測(cè)度理論的CVPP運(yùn)行方式研究[D];華北電力大學(xué)(北京);2016年
9 董晨椌;中小板上市公司信用風(fēng)險(xiǎn)測(cè)度研究[D];湖南大學(xué);2016年
10 周雪靜;我國商業(yè)銀行違約風(fēng)險(xiǎn)測(cè)度研究[D];山東大學(xué);2016年
,本文編號(hào):2333002
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2333002.html