天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 信貸論文 >

基于EEMD-SVR的預測模型與應用

發(fā)布時間:2018-08-18 13:02
【摘要】:針對金融時間序列的復雜性,本文將經(jīng)驗模態(tài)分解(EMD)引入金融時間序列預測框架中進行研究。EMD多應用于通信、氣象領域的數(shù)據(jù)處理,而應用于金融領域則不多,但是它具有明顯的優(yōu)點:能根據(jù)數(shù)據(jù)本身的時間尺度特征準確反映原時間序列的物理特性而不造成信號損失,而且無需預先設定任何基函數(shù),這與小波分析、傅里葉變換等方法有本質的區(qū)別。但EMD存在模態(tài)混疊問題,因此需要對EMD方法進行改進和優(yōu)化以提高預測的有效性。 本文首先構建了總體經(jīng)驗模態(tài)分解(EEMD)模型,基于獲取的原始數(shù)據(jù),模擬產生多條路徑的修正數(shù)據(jù),每一次修正的數(shù)據(jù)中加入不同的白噪聲以抵消原始數(shù)據(jù)中的噪聲,對每個修正的序列進行EMD分解,而后取多次分解的平均值作為最后的分解序列,從而升了序列的信噪比,解決模態(tài)混疊問題。之后,將支持向量回歸(SVR)模型引入到金融時間序列分析,同時,采用多種群遺傳算法(MPGA)進行SVR的參數(shù)尋優(yōu)。MPGA引入多個種群同時進行遺傳進化搜索,對不同的種群設置相應的控制參數(shù),并在不同種群之間依靠移民算子完成信息交互,最終在多個種群協(xié)同進化下得到最優(yōu)解,,可以有效地防止早熟,大大提高收斂速度。 最后,基于前文構建的EMD與SVR的改進模型,在趨勢交易中進行應用。構建EEMD-MPGA-SVR預測模型。應用的結果表明:其一,對比不同參數(shù)尋優(yōu)的SVR模型發(fā)現(xiàn),不論是否進行EEMD分解,與網(wǎng)格搜索法SVR、標準遺傳算法SVR相比,多種群遺傳算法SVR的參數(shù)估計及其預測效果都是最好的。其二,對比進行EEMD分解前后的預測效果發(fā)現(xiàn),基于EEMD分解的SVR預測效果明顯優(yōu)于直接采用原始序列的SVR預測(偏差較。,而且能較快地捕捉市場信息,由此所觸發(fā)交易的累計收益率也更高,平均累計收益率也更高,從而收益的穩(wěn)定性更強。
[Abstract]:In view of the complexity of financial time series, empirical mode decomposition (EMD) is introduced into the framework of financial time series prediction. EMD is mostly used in communication, meteorological data processing, but not in financial field. But it has obvious advantages: it can accurately reflect the physical characteristics of the original time series according to the time scale characteristics of the data without causing signal loss, and it does not need to set any basis function in advance, which is similar to wavelet analysis. Fourier transform and other methods have essential differences. However, EMD has the problem of modal aliasing, so it is necessary to improve and optimize the EMD method to improve the effectiveness of prediction. In this paper, a global empirical mode decomposition (EEMD) model is constructed. Based on the original data obtained, the modified data of multiple paths are simulated, and different white noises are added to each modified data to offset the noise in the original data. Each modified sequence is decomposed by EMD, and then the average value of multiple decomposition is taken as the final decomposition sequence, which increases the SNR of the sequence and solves the problem of mode aliasing. Then, the support vector regression (SVR) model is introduced into the financial time series analysis. At the same time, the multi-population genetic algorithm (MPGA) is used to optimize the parameters of SVR. By setting corresponding control parameters for different populations and interacting information among different populations by means of immigration operators, the optimal solution can be obtained under the coevolution of multiple populations, which can effectively prevent premature maturing and greatly improve the convergence rate. Finally, based on the improved model of EMD and SVR, it is applied in trend trading. EEMD-MPGA-SVR prediction model is constructed. The application results show that: firstly, compared with the SVR model with different parameters, it is found that, whether or not EEMD is decomposed, it is compared with the grid search method and the standard genetic algorithm (SVR). Multi-population genetic algorithm (SVR) is the best in parameter estimation and prediction. Secondly, comparing the prediction results before and after EEMD decomposition, it is found that the prediction effect of SVR based on EEMD decomposition is obviously better than that of SVR prediction using the original sequence directly (the deviation is small), and it can capture market information quickly. The cumulative yield and the average cumulative yield are higher, so the return is more stable.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F830.91;F224;TP18

【參考文獻】

相關期刊論文 前10條

1 吳萌;徐全智;;支持向量機在金融時間序列預測中的應用[J];電子科技大學學報;2007年S1期

2 葉在福,單淵達;基于多種群遺傳算法的輸電系統(tǒng)擴展規(guī)劃[J];電力系統(tǒng)自動化;2000年05期

3 李天云,趙妍,李楠;基于EMD的Hilbert變換應用于暫態(tài)信號分析[J];電力系統(tǒng)自動化;2005年04期

4 湯凌冰;盛煥燁;湯凌霄;;新型小波支持向量機在波動率預測中的實證研究[J];系統(tǒng)工程;2009年01期

5 奉國和,朱思銘;改進SVM及其在時間序列數(shù)據(jù)預測中的應用[J];華南理工大學學報(自然科學版);2005年05期

6 丁志宏;謝國權;;金融時間序列多分辨率實證研究的EMD方法[J];經(jīng)濟研究導刊;2009年06期

7 陳為民;馬超群;;支持向量機方法及其在金融中的應用與前景[J];金融經(jīng)濟;2006年12期

8 李立輝,田翔,楊海東,胡月明;基于SVR的金融時間序列預測[J];計算機工程與應用;2005年30期

9 曲文龍;李海燕;劉永偉;楊炳儒;;基于小波和支持向量機的多尺度時間序列預測[J];計算機工程與應用;2007年29期

10 陳果;鄧堰;;遺傳算法特征選取中的幾種適應度函數(shù)構造新方法及其應用[J];機械科學與技術;2011年01期

相關碩士學位論文 前1條

1 瞿娜娜;基于組合核函數(shù)支持向量機研究及應用[D];華南理工大學;2011年



本文編號:2189547

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2189547.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶1822b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com