天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 信貸論文 >

基于EEMD-SVR的預(yù)測(cè)模型與應(yīng)用

發(fā)布時(shí)間:2018-08-18 13:02
【摘要】:針對(duì)金融時(shí)間序列的復(fù)雜性,本文將經(jīng)驗(yàn)?zāi)B(tài)分解(EMD)引入金融時(shí)間序列預(yù)測(cè)框架中進(jìn)行研究。EMD多應(yīng)用于通信、氣象領(lǐng)域的數(shù)據(jù)處理,而應(yīng)用于金融領(lǐng)域則不多,但是它具有明顯的優(yōu)點(diǎn):能根據(jù)數(shù)據(jù)本身的時(shí)間尺度特征準(zhǔn)確反映原時(shí)間序列的物理特性而不造成信號(hào)損失,而且無(wú)需預(yù)先設(shè)定任何基函數(shù),這與小波分析、傅里葉變換等方法有本質(zhì)的區(qū)別。但EMD存在模態(tài)混疊問(wèn)題,因此需要對(duì)EMD方法進(jìn)行改進(jìn)和優(yōu)化以提高預(yù)測(cè)的有效性。 本文首先構(gòu)建了總體經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)模型,基于獲取的原始數(shù)據(jù),模擬產(chǎn)生多條路徑的修正數(shù)據(jù),每一次修正的數(shù)據(jù)中加入不同的白噪聲以抵消原始數(shù)據(jù)中的噪聲,對(duì)每個(gè)修正的序列進(jìn)行EMD分解,而后取多次分解的平均值作為最后的分解序列,從而升了序列的信噪比,解決模態(tài)混疊問(wèn)題。之后,將支持向量回歸(SVR)模型引入到金融時(shí)間序列分析,同時(shí),采用多種群遺傳算法(MPGA)進(jìn)行SVR的參數(shù)尋優(yōu)。MPGA引入多個(gè)種群同時(shí)進(jìn)行遺傳進(jìn)化搜索,對(duì)不同的種群設(shè)置相應(yīng)的控制參數(shù),并在不同種群之間依靠移民算子完成信息交互,最終在多個(gè)種群協(xié)同進(jìn)化下得到最優(yōu)解,,可以有效地防止早熟,大大提高收斂速度。 最后,基于前文構(gòu)建的EMD與SVR的改進(jìn)模型,在趨勢(shì)交易中進(jìn)行應(yīng)用。構(gòu)建EEMD-MPGA-SVR預(yù)測(cè)模型。應(yīng)用的結(jié)果表明:其一,對(duì)比不同參數(shù)尋優(yōu)的SVR模型發(fā)現(xiàn),不論是否進(jìn)行EEMD分解,與網(wǎng)格搜索法SVR、標(biāo)準(zhǔn)遺傳算法SVR相比,多種群遺傳算法SVR的參數(shù)估計(jì)及其預(yù)測(cè)效果都是最好的。其二,對(duì)比進(jìn)行EEMD分解前后的預(yù)測(cè)效果發(fā)現(xiàn),基于EEMD分解的SVR預(yù)測(cè)效果明顯優(yōu)于直接采用原始序列的SVR預(yù)測(cè)(偏差較。夷茌^快地捕捉市場(chǎng)信息,由此所觸發(fā)交易的累計(jì)收益率也更高,平均累計(jì)收益率也更高,從而收益的穩(wěn)定性更強(qiáng)。
[Abstract]:In view of the complexity of financial time series, empirical mode decomposition (EMD) is introduced into the framework of financial time series prediction. EMD is mostly used in communication, meteorological data processing, but not in financial field. But it has obvious advantages: it can accurately reflect the physical characteristics of the original time series according to the time scale characteristics of the data without causing signal loss, and it does not need to set any basis function in advance, which is similar to wavelet analysis. Fourier transform and other methods have essential differences. However, EMD has the problem of modal aliasing, so it is necessary to improve and optimize the EMD method to improve the effectiveness of prediction. In this paper, a global empirical mode decomposition (EEMD) model is constructed. Based on the original data obtained, the modified data of multiple paths are simulated, and different white noises are added to each modified data to offset the noise in the original data. Each modified sequence is decomposed by EMD, and then the average value of multiple decomposition is taken as the final decomposition sequence, which increases the SNR of the sequence and solves the problem of mode aliasing. Then, the support vector regression (SVR) model is introduced into the financial time series analysis. At the same time, the multi-population genetic algorithm (MPGA) is used to optimize the parameters of SVR. By setting corresponding control parameters for different populations and interacting information among different populations by means of immigration operators, the optimal solution can be obtained under the coevolution of multiple populations, which can effectively prevent premature maturing and greatly improve the convergence rate. Finally, based on the improved model of EMD and SVR, it is applied in trend trading. EEMD-MPGA-SVR prediction model is constructed. The application results show that: firstly, compared with the SVR model with different parameters, it is found that, whether or not EEMD is decomposed, it is compared with the grid search method and the standard genetic algorithm (SVR). Multi-population genetic algorithm (SVR) is the best in parameter estimation and prediction. Secondly, comparing the prediction results before and after EEMD decomposition, it is found that the prediction effect of SVR based on EEMD decomposition is obviously better than that of SVR prediction using the original sequence directly (the deviation is small), and it can capture market information quickly. The cumulative yield and the average cumulative yield are higher, so the return is more stable.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F830.91;F224;TP18

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳萌;徐全智;;支持向量機(jī)在金融時(shí)間序列預(yù)測(cè)中的應(yīng)用[J];電子科技大學(xué)學(xué)報(bào);2007年S1期

2 葉在福,單淵達(dá);基于多種群遺傳算法的輸電系統(tǒng)擴(kuò)展規(guī)劃[J];電力系統(tǒng)自動(dòng)化;2000年05期

3 李天云,趙妍,李楠;基于EMD的Hilbert變換應(yīng)用于暫態(tài)信號(hào)分析[J];電力系統(tǒng)自動(dòng)化;2005年04期

4 湯凌冰;盛煥燁;湯凌霄;;新型小波支持向量機(jī)在波動(dòng)率預(yù)測(cè)中的實(shí)證研究[J];系統(tǒng)工程;2009年01期

5 奉國(guó)和,朱思銘;改進(jìn)SVM及其在時(shí)間序列數(shù)據(jù)預(yù)測(cè)中的應(yīng)用[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年05期

6 丁志宏;謝國(guó)權(quán);;金融時(shí)間序列多分辨率實(shí)證研究的EMD方法[J];經(jīng)濟(jì)研究導(dǎo)刊;2009年06期

7 陳為民;馬超群;;支持向量機(jī)方法及其在金融中的應(yīng)用與前景[J];金融經(jīng)濟(jì);2006年12期

8 李立輝,田翔,楊海東,胡月明;基于SVR的金融時(shí)間序列預(yù)測(cè)[J];計(jì)算機(jī)工程與應(yīng)用;2005年30期

9 曲文龍;李海燕;劉永偉;楊炳儒;;基于小波和支持向量機(jī)的多尺度時(shí)間序列預(yù)測(cè)[J];計(jì)算機(jī)工程與應(yīng)用;2007年29期

10 陳果;鄧堰;;遺傳算法特征選取中的幾種適應(yīng)度函數(shù)構(gòu)造新方法及其應(yīng)用[J];機(jī)械科學(xué)與技術(shù);2011年01期

相關(guān)碩士學(xué)位論文 前1條

1 瞿娜娜;基于組合核函數(shù)支持向量機(jī)研究及應(yīng)用[D];華南理工大學(xué);2011年



本文編號(hào):2189547

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2189547.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1822b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产精品午夜福利免费在线| 国产精品伦一区二区三区在线| 中文字幕亚洲精品在线播放| 人妻露脸一区二区三区| 国产免费一区二区三区不卡| 国内外激情免费在线视频| 日本一本在线免费福利| 不卡视频在线一区二区三区| 色婷婷久久五月中文字幕| 99久久国产综合精品二区| 日韩18一区二区三区| 亚洲中文字幕在线视频频道| 欧美国产亚洲一区二区三区| 日韩熟妇人妻一区二区三区 | 亚洲欧美日韩中文字幕二欧美 | 麻豆视频传媒入口在线看| 99精品国产一区二区青青 | 精品少妇人妻av免费看| 激情偷拍一区二区三区视频| 国产精品视频第一第二区| 国产福利一区二区三区四区| 日本在线 一区 二区| 精品精品国产欧美在线| 欧美精品中文字幕亚洲| 欧美激情一区=区三区| 成年人视频日本大香蕉久久| 好东西一起分享老鸭窝| 久久综合九色综合欧美| 91欧美一区二区三区| 91精品国产综合久久福利| 免费啪视频免费欧美亚洲| 欧美日韩亚洲精品内裤| 色婷婷激情五月天丁香| 久久精视频免费视频观看| 熟女少妇久久一区二区三区| 国内精品偷拍视频久久| 亚洲乱码av中文一区二区三区| 国产精品一区二区成人在线| 国产又长又粗又爽免费视频| 黑人粗大一区二区三区| 九九热视频经典在线观看|