基于EEMD-SVR的預測模型與應用
[Abstract]:In view of the complexity of financial time series, empirical mode decomposition (EMD) is introduced into the framework of financial time series prediction. EMD is mostly used in communication, meteorological data processing, but not in financial field. But it has obvious advantages: it can accurately reflect the physical characteristics of the original time series according to the time scale characteristics of the data without causing signal loss, and it does not need to set any basis function in advance, which is similar to wavelet analysis. Fourier transform and other methods have essential differences. However, EMD has the problem of modal aliasing, so it is necessary to improve and optimize the EMD method to improve the effectiveness of prediction. In this paper, a global empirical mode decomposition (EEMD) model is constructed. Based on the original data obtained, the modified data of multiple paths are simulated, and different white noises are added to each modified data to offset the noise in the original data. Each modified sequence is decomposed by EMD, and then the average value of multiple decomposition is taken as the final decomposition sequence, which increases the SNR of the sequence and solves the problem of mode aliasing. Then, the support vector regression (SVR) model is introduced into the financial time series analysis. At the same time, the multi-population genetic algorithm (MPGA) is used to optimize the parameters of SVR. By setting corresponding control parameters for different populations and interacting information among different populations by means of immigration operators, the optimal solution can be obtained under the coevolution of multiple populations, which can effectively prevent premature maturing and greatly improve the convergence rate. Finally, based on the improved model of EMD and SVR, it is applied in trend trading. EEMD-MPGA-SVR prediction model is constructed. The application results show that: firstly, compared with the SVR model with different parameters, it is found that, whether or not EEMD is decomposed, it is compared with the grid search method and the standard genetic algorithm (SVR). Multi-population genetic algorithm (SVR) is the best in parameter estimation and prediction. Secondly, comparing the prediction results before and after EEMD decomposition, it is found that the prediction effect of SVR based on EEMD decomposition is obviously better than that of SVR prediction using the original sequence directly (the deviation is small), and it can capture market information quickly. The cumulative yield and the average cumulative yield are higher, so the return is more stable.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:F830.91;F224;TP18
【參考文獻】
相關期刊論文 前10條
1 吳萌;徐全智;;支持向量機在金融時間序列預測中的應用[J];電子科技大學學報;2007年S1期
2 葉在福,單淵達;基于多種群遺傳算法的輸電系統(tǒng)擴展規(guī)劃[J];電力系統(tǒng)自動化;2000年05期
3 李天云,趙妍,李楠;基于EMD的Hilbert變換應用于暫態(tài)信號分析[J];電力系統(tǒng)自動化;2005年04期
4 湯凌冰;盛煥燁;湯凌霄;;新型小波支持向量機在波動率預測中的實證研究[J];系統(tǒng)工程;2009年01期
5 奉國和,朱思銘;改進SVM及其在時間序列數(shù)據(jù)預測中的應用[J];華南理工大學學報(自然科學版);2005年05期
6 丁志宏;謝國權;;金融時間序列多分辨率實證研究的EMD方法[J];經(jīng)濟研究導刊;2009年06期
7 陳為民;馬超群;;支持向量機方法及其在金融中的應用與前景[J];金融經(jīng)濟;2006年12期
8 李立輝,田翔,楊海東,胡月明;基于SVR的金融時間序列預測[J];計算機工程與應用;2005年30期
9 曲文龍;李海燕;劉永偉;楊炳儒;;基于小波和支持向量機的多尺度時間序列預測[J];計算機工程與應用;2007年29期
10 陳果;鄧堰;;遺傳算法特征選取中的幾種適應度函數(shù)構造新方法及其應用[J];機械科學與技術;2011年01期
相關碩士學位論文 前1條
1 瞿娜娜;基于組合核函數(shù)支持向量機研究及應用[D];華南理工大學;2011年
本文編號:2189547
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/2189547.html