滬深股市收益率及其相關(guān)性的實(shí)證分析
本文選題:滬深股市 切入點(diǎn):收益率分布 出處:《天津財(cái)經(jīng)大學(xué)》2013年碩士論文
【摘要】:股指的波動(dòng)特征無(wú)外乎單個(gè)股指的波動(dòng)特征與多個(gè)股指間的波動(dòng)特征,關(guān)于單個(gè)股指波動(dòng)特征的研究,即單個(gè)股指收益率分布的研究,本文基于非參數(shù)核密度估計(jì)方法,充分利用樣本數(shù)據(jù)本身特征來(lái)擬合股指收益率密度曲線(xiàn),有效降低了參數(shù)模型中因既定假設(shè)分布所引起的擬合誤差;關(guān)于多個(gè)股指間波動(dòng)特征的研究,即不同股指間波動(dòng)相關(guān)性的研究,本文使用連接函數(shù)與核密度估計(jì)相結(jié)合,即在不假設(shè)邊緣分布的條件下,利用半?yún)?shù)方法求解連接函數(shù)中的參數(shù),有效提高了擬合精度。 在以上研究方法體系之上,本文對(duì)中國(guó)滬深股市收益率及其相關(guān)性進(jìn)行了不同層次與時(shí)間段的實(shí)證分析,得出相關(guān)結(jié)論并提出政策建議。 股指收益率方面,將大盤(pán)、板塊及個(gè)股三者收益率分布情況聯(lián)系起來(lái)分析,得出結(jié)論:核密度估計(jì)可以靈活準(zhǔn)確擬合股指收益率曲線(xiàn);宏觀(guān)、中觀(guān)、微觀(guān)三層面的收益率分布情況均為非正態(tài),存在尖峰厚尾;宏觀(guān)、中觀(guān)收益率分布有更為突出的左側(cè)厚尾,說(shuō)明更多投資者是風(fēng)險(xiǎn)厭惡型,對(duì)股市中利空消息表現(xiàn)出更為強(qiáng)烈的協(xié)同效應(yīng);微觀(guān)個(gè)股表現(xiàn)出左右厚尾情況均存在的復(fù)雜現(xiàn)象,說(shuō)明上市公司的信譽(yù)和行業(yè)背景影響投資者風(fēng)險(xiǎn)偏好。 股指相關(guān)性方面,本文完成了1997年1月至2012年7月滬深兩市大盤(pán)指數(shù)相關(guān)性的靜態(tài)分析,并對(duì)2008年9月金融危機(jī)前后滬深兩市相關(guān)性特征進(jìn)行了對(duì)比分析,得出結(jié)論:上尾更為緊湊的Gumbel Copula函數(shù)基本能夠捕捉滬深兩市相關(guān)結(jié)構(gòu)的特征,即當(dāng)一個(gè)市場(chǎng)指數(shù)出現(xiàn)高收益率時(shí),另一個(gè)市場(chǎng)出現(xiàn)高收益率指數(shù)的可能性也很大,出現(xiàn)低收益率時(shí)雖然也有類(lèi)似效應(yīng),但不如高收益率時(shí)的范圍區(qū)間廣。由對(duì)比分析可知,相關(guān)程度方面,金融危機(jī)后兩市的相關(guān)依存度較危機(jī)前明顯增強(qiáng),說(shuō)明滬深兩市在整體上熊市相關(guān)依存度更強(qiáng);相關(guān)結(jié)構(gòu)方面,危機(jī)前后滬深兩市的相關(guān)結(jié)構(gòu)并沒(méi)有發(fā)生非常明顯的變化,說(shuō)明由美國(guó)次貸危機(jī)引發(fā)的全球金融危機(jī)對(duì)我國(guó)股市的沖擊并沒(méi)有改變滬深股市整體相關(guān)結(jié)構(gòu)。
[Abstract]:The volatility characteristic of the index finger is not related to the fluctuation characteristic of single index finger and the fluctuation characteristic between multiple index fingers , namely the study of single index fluctuation characteristic , that is , the study of single index yield distribution . Based on the non - parameter kernel density estimation method , the paper uses the characteristic of sample data itself to fit the curve of the yield density curve of stock index , effectively reduces the fitting error caused by the established hypothesis distribution in the parameter model ;
In this paper , we study the relationship between the fluctuation characteristics of multiple index fingers , that is , the correlation between different index fingers . In this paper , the connection function is combined with kernel density estimation , that is , under the condition that the edge distribution is not assumed , the parameters in the connection function are solved by using the semi - parametric method , and the fitting accuracy is effectively improved .
Based on the above research methods , this paper analyzes the yield and its correlation of Shanghai - Shenzhen stock market at different levels and time periods , and draws relevant conclusions and puts forward policy recommendations .
Based on the analysis of the yield distribution of stock index , plate and stock , it is concluded that nuclear density estimation can fit the yield curve of stock index flexibly and accurately .
Macro - , meso - and micro - level yield distributions are non - normal , and there is a peak - thick tail .
Macro - and middle - view yield distributions have a more prominent left - hand thick tail , which shows that more investors are risk - averse and show a stronger synergy in the stock market .
The micro - stock shows the complex phenomenon in the case of left and right thick tail , which indicates that the reputation and the background of the listed company affect the investor ' s risk appetite .
Based on the analysis of the correlation between Shanghai and Shenzhen in Shanghai and Shenzhen from January 1997 to July 2012 , the paper concludes that the more compact Gumbel Copula function can capture the characteristics of the related structures in Shanghai and Shenzhen .
There is no obvious change in the structure of Shanghai and Shenzhen in Shanghai and Shenzhen before and after the crisis , which shows that the impact of the global financial crisis caused by the U.S . subprime crisis on China ' s stock market has not changed the overall related structure of Shanghai and Shenzhen stock market .
【學(xué)位授予單位】:天津財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:F832.51;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳光旭,程乾生,潘家柱;中國(guó)股票市場(chǎng)風(fēng)險(xiǎn)值的非參數(shù)估計(jì)[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
2 陳君蘭;;基于Copula理論對(duì)滬、深股市相關(guān)性的非對(duì)稱(chēng)性的實(shí)證分析[J];中國(guó)城市經(jīng)濟(jì);2010年11期
3 區(qū)詩(shī)德;楊善朝;;VaR與ES的非參數(shù)估計(jì)的統(tǒng)計(jì)分析[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年10期
4 韋艷華,張世英;金融市場(chǎng)的相關(guān)性分析——Copula-GARCH模型及其應(yīng)用[J];系統(tǒng)工程;2004年04期
5 李?lèi)?程希駿;;上證指數(shù)和恒生指數(shù)的copula尾部相關(guān)性分析[J];系統(tǒng)工程;2006年05期
6 任仙玲;張世英;;基于核估計(jì)及多元阿基米德Copula的投資組合風(fēng)險(xiǎn)分析[J];管理科學(xué);2007年05期
7 黃德龍;楊曉光;;中國(guó)證券市場(chǎng)股指收益分布的實(shí)證分析[J];管理科學(xué)學(xué)報(bào);2008年01期
8 洪永淼;成思危;劉艷輝;汪壽陽(yáng);;中國(guó)股市與世界其他股市之間的大風(fēng)險(xiǎn)溢出效應(yīng)[J];經(jīng)濟(jì)學(xué)(季刊);2004年02期
9 徐龍炳;中國(guó)股票市場(chǎng)股票收益穩(wěn)態(tài)特性的實(shí)證研究[J];金融研究;2001年06期
10 張秀琦;唐吉洪;任永昌;;中美股票市場(chǎng)相依性研究——基于Copula的非參數(shù)估計(jì)和檢驗(yàn)[J];科學(xué)技術(shù)與工程;2012年14期
相關(guān)博士學(xué)位論文 前1條
1 李道葉;非線(xiàn)性框架下中國(guó)股票市場(chǎng)價(jià)格收益率特征分析[D];暨南大學(xué);2007年
,本文編號(hào):1671273
本文鏈接:http://sikaile.net/guanlilunwen/bankxd/1671273.html