人工神經(jīng)網(wǎng)絡(luò)在太陽能熱水器市場預(yù)測中的應(yīng)用
[Abstract]:Solar water heater is a native and independent intellectual property industry in China. With the development of economy, the consciousness of social energy saving has been further improved, which has greatly promoted the development of solar water heater industry in China. The 12th five-year Plan explicitly regards solar energy industry as one of our country's strategic emerging industries, introducing a large number of supporting policies. These policies and measures have greatly promoted the vigorous development of the solar water heater industry, and the competition in the industry is becoming more and more fierce. If the enterprise wants to win in the fierce competition, it must try to deliver the product to the customer at the most reasonable cost, which requires the enterprise to correctly evaluate and forecast the market change and the development prospect of the business itself. This is a key factor in the success of modern enterprises. Prediction is the premise of decision-making, and scientific prediction is indispensable to successful decision-making. Prediction can improve the ability of enterprises to respond to uncertain events, thus reducing the losses brought by adverse events and increasing the benefits of utilizing favorable opportunities. The forecast is made according to the statistical category of the law of market change. The traditional market forecasting models mostly use the historical demand data in time series to predict the future market, and the prediction factors are greatly influenced by personal experience judgment, which makes the practical application of forecasting technology difficult and the prediction accuracy is poor. Because of its strong self-learning, self-training and nonlinear traceability, artificial neural networks will help to improve the accuracy and efficiency of market forecasting. By comparing with the traditional market demand forecasting model, according to the actual situation of the solar water heater market demand in our country, this paper designs and studies the market demand forecasting model suitable for the solar water heater market. Firstly, it introduces the related theories and main forecasting methods of market demand forecasting. Secondly, it studies the algorithm model of solar energy market demand forecasting, compares Gompertz regression algorithm and exponential smoothing algorithm. Thirdly, it studies the BP neural network model and its algorithm. The model is used to predict the demand of solar water heater market, and compared with the prediction results of Gompertz model algorithm and exponential smoothing algorithm.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊璐,黃梯云,洪家榮;一種基于神經(jīng)網(wǎng)絡(luò)的時(shí)間序列自適應(yīng)建模和預(yù)測方法[J];決策與決策支持系統(tǒng);1996年02期
2 郭丹,李平,曹江濤;基于Elman網(wǎng)絡(luò)的非線性系統(tǒng)神經(jīng)元自適應(yīng)預(yù)測控制[J];計(jì)算機(jī)仿真;2003年08期
3 肖本賢;王曉偉;朱志國;劉一福;;基于改進(jìn)PSO算法的過熱汽溫神經(jīng)網(wǎng)絡(luò)預(yù)測控制[J];控制理論與應(yīng)用;2008年03期
4 戴文戰(zhàn);婁海川;楊愛萍;;非線性系統(tǒng)神經(jīng)網(wǎng)絡(luò)預(yù)測控制研究進(jìn)展[J];控制理論與應(yīng)用;2009年05期
5 李奇,李世華;一類神經(jīng)網(wǎng)絡(luò)智能PID控制算法的分析與改進(jìn)[J];控制與決策;1998年04期
6 劉喜梅,于飛;基于神經(jīng)網(wǎng)絡(luò)建模的預(yù)測控制[J];青島化工學(xué)院學(xué)報(bào);1999年03期
7 簡相超,鄭君里;混沌神經(jīng)網(wǎng)絡(luò)預(yù)測算法評(píng)價(jià)準(zhǔn)則與性能分析[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年07期
8 賀昌政,李曉峰,俞海;BP人工神經(jīng)網(wǎng)絡(luò)模型的新改進(jìn)及其應(yīng)用[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2002年04期
9 劉曉霞,田大鋼;神經(jīng)網(wǎng)絡(luò)在經(jīng)濟(jì)預(yù)測中的應(yīng)用[J];統(tǒng)計(jì)與預(yù)測;2004年02期
10 杜福銀;徐揚(yáng);;基于遞歸神經(jīng)網(wǎng)絡(luò)的預(yù)測模糊控制[J];西南交通大學(xué)學(xué)報(bào);2006年06期
相關(guān)博士學(xué)位論文 前1條
1 白艷萍;人工神經(jīng)網(wǎng)絡(luò)在組合優(yōu)化與信息處理中的應(yīng)用[D];中北大學(xué);2005年
相關(guān)碩士學(xué)位論文 前2條
1 陸冬娜;基于神經(jīng)網(wǎng)絡(luò)的非線性模型預(yù)測控制[D];浙江工業(yè)大學(xué);2007年
2 李必輝;基于神經(jīng)網(wǎng)絡(luò)的銷售分析預(yù)測研究與應(yīng)用[D];東華大學(xué);2008年
本文編號(hào):2272671
本文鏈接:http://sikaile.net/falvlunwen/zhishichanquanfa/2272671.html